
Blitz 2 Editorial
June 8th, 2020

1 Omkar and Explosions
To determine if the product exceeds process the numbers while keeping a running product. To,109
prevent overflow, use long integers and terminate as soon as your number exceeds Be careful.109
when one of the numbers is 0, as that will make the entire product 0, regardless of how big the other
numbers are.
Time Complexity: (N)O

C++ Code

#include <bits/stdc++.h>

using namespace std;

int main() {
 int n; cin >> n;
 vector<long long> nums(n);
 for(auto &e : nums) cin >> e;
 sort(nums.begin(), nums.end());

 if(!nums[0]) { cout << "0" << endl; return 0; }
 long long run = 1;
 for(auto &e : nums) {
 run *= e;

 if(run > 1e9) { cout << "EXPLOSION!!!" << endl; return 0; }
 }

 cout << run << endl;
}

2 Omkar and Salary
A brute force approach of finding every elder for each Omkaryote runs in which is far too slow(N),O 2
given the input constraints. Instead, sort the Omkaryotes by rank from highest to lowest and iterate
through them, keeping track of how many have already been processed. The amount of money an
Omkaryote will give out in this ordering is Be careful to avoid giving money to# processed).xi · (
people of the same rank, as elders must have a strictly greater rank.
Time Complexity: (N og N)O · l 2

C++ Code

#include <bits/stdc++.h>

using namespace std;

int main() {
 int n; cin >> n;
 vector<pair<int, long long>> omk;
 for(int i = 0; i < n; i++) {
 int a, b; cin >> a >> b;
 omk.push_back({a, b});

 }

 sort(omk.begin(), omk.end(), greater<pair<int, long long>>());
 long long ans = 0, cur = 0, count = 0;
 for(int i = 0; i < n; i++) {
 if(i and omk[i].first != omk[i-1].first) { count += cur; cur = 0; }
 ans += omk[i].second*count;

 cur++;

 }

 cout << ans << endl;
}

3 Omkar and Test
A good first step is to do a prefix sum on the changes to get the actual test scores on each date. Iterate
through the test scores, keeping track of a running minimum. Assume that every day you process will
be the second test day, and the minimum thus far was the first day. Take the maximum difference over
all possible test dates. This question equates to the maximum subarray sum question.
Time Complexity: (N)O

C++ Code

#include <bits/stdc++.h>

using namespace std;

int main() {
 int n; cin >> n;
 vector<long long> scores = {0};
 long long ans = INT_MIN, run = 0;
 for(int i = 0; i < n-1; i++) {
 long long c; cin >> c;
 scores.push_back(scores.back()+c);

 ans = max(ans, scores.back()-run);

 run = min(run, scores.back());

 }

 cout << ans << endl;
}

4 Omkar and Race
This question can be solved using dynamic programming, where a state represents the leastp[i][j]d
number of steps needed to reach platform with potion uses left. Transitions would be eitheri j
moving by or using the potion. However, due to the large size of , this solution runs outBB1, 2 N • K
of both time and memory. The code can be optimized by noting that even though up to potions canK
be used, this number is at most , since each potion doubles the current position.in(K, log N)m 2
Time Complexity: (N in(K, log N))O · m 2

C++ Code

#include <bits/stdc++.h>

using namespace std;

int dp[200001][31];

int main() {
 int n, k, a, b; cin >> n >> k >> a >> b;
 k = min(k, 30);
 for(int i = 0; i <= n; i++)
 for(int j = 0; j <= k; j++) dp[i][j] = 1e9;
 dp[1][k] = 0;
 for(int i = 1; i <= n; i++) for(int j = 0; j <= k; j++) {
 dp[i+a][j] = min(dp[i+a][j], dp[i][j]+1);
 dp[i+b][j] = min(dp[i+b][j], dp[i][j]+1);
 if(j) dp[i*2][j-1] = min(dp[i*2][j-1], dp[i][j]+1);
 }

 int ans = 1e9;
 for(int i = 0; i <= k; i++) ans = min(ans, dp[n][i]);
 cout << (ans == 1e9 ? -1 : ans) << endl;

}

5 Omkar and Flex
Imagine plotting each Omkaryote on the coordinate plane, with the x-axis being age, and y-axis being
experience. The question then becomes a query for how many points are in the lower left quadrant for
each of the points. Run a sweep of the points from lowest experience to highest experience, using a
data structure to keep track of the ages. At every point, query on the data structure for how many
processed points are at most below in age. A Fenwick tree or segment tree work as possible datadi
structures. Be careful not to count points which have the same experience level.
Time Complexity: (N og N)O · l 2

C++ Code

#include <bits/stdc++.h>

using namespace std;

struct Fenwick {
 vector<int> t;
 Fenwick(int sz) { t.resize(sz+1); }
 int value(int i) {
 int s = 0;
 for(i++; i > 0; i -= i&-i) s += t[i];
 return s;
 }

 void update(int i, int v) {
 for(i++; i < t.size(); i += i&-i) t[i] += v;
 }

};

int main() {
 int n; cin >> n;
 vector<vector<int>> sweep;
 for(int i = 0; i < n; i++) {
 int a, e, d; cin >> a >> e >> d;
 sweep.push_back({e, a, d});

 }

 sort(sweep.begin(), sweep.end());

 Fenwick BIT(100001);
 long long ans = 0, lst = -1;
 vector<int> upd;
 for(auto &e : sweep) {
 if(e[0] != lst) {

 for(auto &v : upd) BIT.update(v, 1);
 lst = e[0];
 upd.clear();

 }

 upd.push_back(e[1]);
 ans += BIT.value(e[1]-1)-BIT.value(max(0, e[1]-e[2]-1));
 }

 cout << ans << endl;
}

6 Omkar and Leaders
One way to solve this is with square-root decomposition. For every chunk, we maintain a suffix array
that stores the answer to a query for the last soldiers, which we precalculate for every chunk, andi
then recalculate for the corresponding chunk in every update query.

Let be the total skill from soldier to the end of the chunk, be the total skill level ofp[i]d i um[l]s : r
soldiers to (without leaders), and soldier be the first soldier after solder such that .l r j i sj ≥ si
Clearly, the leader of every soldier before soldier is soldier , soj i

. All that remains is to efficiently find . This can be done inp[i] um[i] j)s p[j]d = s : j − 1 + (− i i + d j
 time with a binary search and range maximum queries (which is supported efficiently with(log N)O 2

a segment tree).

Updating a value is trivial—simply recalculate the suffix array for the corresponding chunk, and
update the sum and range-max segment trees. To answer a query, maintain a running max of all them
soldiers. Finding the answer for a chunk is very similar to finding the suffix array; determine the first
soldier such that . Then, the chunk contributes to thej sj ≥ m um[1] j)m p[j]s : j − 1 + (− 1 + d
total answer. This is assuming the entire chunk is part of the query range; if not, then brute force the
part of the chunk that lies within the query range.
Time Complexity: ((N)log N)O + Q√N 2

This question is very difficult, even for the last question of the contest, and was not solved by anyone
during the competition. It is roughly the same difficulty as a USACO Open Platinum question.

