
SCT Blitz 3 Editorial
June 12th, 2020

Card Deck

We can efficiently calculate the answer for every prefix by maintaining a running sum of how

many red, blue, and yellow cards there are (call these values , , and). If we pick cards,r b y n3

meaning we want of every color, then the number of cards we need to change isn

. Take the minimum over all prefixes as the answer.|r | b | y |)/2(− n + | − n + | − n

AP vs AD

If an item gives Akali AP and AD, then it will increase her average damage per second byp d

. To avoid working with decimals, which can result in precision errors, we can express/Kd + p

this instead as . Sort the weapons by this value, keeping track of original indices, andKd + p

greedily take the largest of them.M

Baron Nashor

The main idea here is to binary search on the answer. For a given , it’s relativelyt

straightforward to calculate how much damage the champions will have done. Simply check if

this damage is enough to slay Baron Nashor and adjust your lower and upper bounds

accordingly.

Binary Path

First, let’s find a number such that a path exists from , and a number such that an1 a → n1 n2

path exists from . If both these numbers exist, we can always find a path by using an2 → b

buffer, such as .110 100 0001 · · · n1 → 1 · · · → 1 · · · n2

A straightforward value for is . If this is zero, then no value for exists. Finding an1 aa ⋀ 2 n1

value for is a bit trickier. The pattern must be present in —then, cann2 11...110· · · 0 · · · b n2

be . Be sure to handle the edge case where, even though there is no value for11...111· · · 1 · · ·

 or , a solution still exists because .n1 n2 a = b

Forge God

Since the values of are small, we can brute-force every possible strength of a weapon Ornnai

can upgrade. For every strength, find the maximum subarray sum that contains that strength.

To find the maximum subarray sum, maintain a prefix and suffix array. For the prefix array, let

be the greatest subarray sum of weapons that ends at index (since the upgradedref [i]p i − 1

weapon doesn’t gain strength). The transition is fairly simple;

https://codeforces.com/group/M4wsRWBHyZ/contest/283937/problem/A
https://codeforces.com/group/M4wsRWBHyZ/contest/283937/problem/B
https://codeforces.com/group/M4wsRWBHyZ/contest/283937/problem/C
https://codeforces.com/group/M4wsRWBHyZ/contest/283937/problem/D
https://codeforces.com/group/M4wsRWBHyZ/contest/283937/problem/E

, where is the strength of the weapon Ornnref [i] ax(0, ref [i] [i])p = m p − 1 + a − 1 + s s

upgrades—for the suffix array, do the reverse. Then, for every index such that , updatei si = s

the answer as .ref [i] uf f [i]p + s + si

City Repair

You can use a single DFS to calculate the maximum imbalance for every city by maintaining the

largest value seen from the current node to the root. Sort the imbalances of every city, and

greedily repair the city with the most imbalance (decreasing the largest imbalance by) 1 K

times, or until the maximum imbalance is .0

This greedy approach works because the imbalance of a city is caused by the maximum-valued

ancestor, and the imbalance of that ancestor is (since there are no ancestors with a larger0

value). Therefore, repairing the most-imbalanced city will never cause the imbalance of another

city to increase.

https://codeforces.com/group/M4wsRWBHyZ/contest/283937/problem/F

