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1 Review – Augmented Binary Trees

Last week, we discussed a data structure that supports the following operations on a list x of length N , given
associative binary operator ⊕:

1. Query(a, b): Compute the sum xa ⊕ xa+1 ⊕ xa+2 ⊕ ...⊕ xb.

2. Update(i, v): Set xi to v.

We achieved this by storing the N/2 sums of consecutive elements in x, and the N/4 sums of consecutive elements
in this new list, and so on. These lists form a binary tree, where each element has at most two children that its
value depends on. Changing one element in x involves one update on each level of the tree, which is h = O(logN).
Any query can be evaluated by splitting the requested range into ranges covered by a total of at most two nodes per
level. We can store this binary tree as an implicit structure in a regular array: let X1 be the topmost node, and X2k

and X2k+1 be the two children of node Xk.

2 Range Updates and Range Queries

Now that we have the basics of BITs down we want to be able to efficiently support range updates and range queries,
that is we want to be able to add val to [a..b] and find the cumulative sum of [a..b]. To support range updates, notice
that Update(a, v) only affects indices greater than or equal to a and that if we run Update(b + 1,−v) then we can
cancel out part of the first update we performed. However, if we call Query(a, b), the value stays the same when it
should return v ∗ (b− (a−1)). Thus, we can no longer perform range queries, only point queries of the form Query(i)
that return the sum over [0..i].

To get around the above problem we need to take a slightly different approach. For now, suppose we have some
method of performing an update that adds val to [a..b] (for the sake of simplicity we’ll assume the remaining values
are all 0). After a single update, the sum over the range [0..p] is:

1. 0; 0 ≤ p < a

2. val ∗ (p− (a− 1)); a ≤ p ≤ b

3. val ∗ (b− (a− 1)); b < p < N

Notice that for an index p we can get the above sum by subtracting some factor X from v ∗ p for some value v:

1. X = 0, v = 0; 0 ≤ p < a

2. X = val, ∗(a− 1), v = val; a ≤ p ≤ b

3. X = val ∗ (a− 1) − val ∗ b, v = 0; b < p < N
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The form of these equations suggests that we should maintain another BIT, which we’ll denote B2, to keep track of
the X values in addition to our original BIT, which we’ll call B1 that keeps track of v.

More specifically, when we add val to [a..b] in B1, we need to call UpdateB2(a, val ∗ (a − 1)) and UpdateB2(b +
1,−val ∗ b). The cumulative sum of [0..p] then can be found by QueryB1(p) ∗ p−QueryB2(p).

Intuitively, what we have just done is to notice that the cumulative sum of a constant valued range update is in the
form of the equation of a line. Computing a prefix sum is the discrete analogue of integration and so our observation
makes sense because the integral of a non-zero constant function is a linear function. Consequently, given the index
we’re calculating the sum to, the sum can be computed using only TWO parameters as opposed to an arbitrary
number like before. These two parameters correspond to the slope and intercept of the line, and are also the reason
for the number of BITs we need.

3 Problems

1. (Brian Dean, 2012) FJ has set up a cow race with N (1 ≤ N ≤ 100, 000) cows running L laps around a circular
track of length C (1 ≤ L,C ≤ 25, 000). The cows all start at the same point on the track and run at different
speeds, with the race ending when the fastest cow has run the total distance of L ∗ C. FJ notices several
occurrences of one cow overtaking another. Count the total number of crossing events during the entire race.

2. (Brian Dean, 2011) Farmer John has lined up his N (1 ≤ N ≤ 100, 000) cows each with height Hi (1 ≤ Hi ≤
1, 000, 000, 000) to take a picture of a contiguous subsequence of the cows, such that the median height is at
least a certain threshold X (1 ≤ X ≤ 1, 000, 000, 000). Count the number of possible subsequences.

3. (SPOJ BRCKTS) Given a bracket expression of length N (1 ≤ N ≤ 30, 000) process M operations. There are
two types of operations, a replacement, which changes the ith bracket into its opposite, and a check, which
determines whether a bracket expression is correct.

4. (Codeforces ABBYY Cup 3.0 B2) The Smart Beaver has many beavers, numbered from 1 to N . He wants
to shave the beavers using a special machine, the Beavershave 5000. The Beavershave 5000 will shave any
subsequence of beavers whose numbers are strictly increasing from left to right in a single pass. Write a
program to support the following operations: 1. Determine the minimum number of Beavershave 5000 passes
to shave all the beavers with ids between x and y. 2. Swap beavers x and y.

5. (Codeforces Round #197 Div. 2 D) Xenia has a sequence a, consisting of 2N non-negative integers for which
he wants to calculate some value v. First, Xenia writes down the OR of adjacent elements of sequence a. Next,
Xenia writes the XOR of adjacent elements of the sequence obtained after the first iteration. At the third
iteration Xenia writes the OR of the adjacent elements of the sequence obtained after the second iteration.
And so on; the operations of OR and XOR alternate until Xenia is left with a single number v. You are given
Xenia’s initial sequence and m queries. Each query is a pair of integers p, b that means that you need to perform
the assignment ap = b. After each query, you need to print the new value v for the new sequence a.

6. Support range updates where the values form an arithmetic progression. (Hint: what is the integral of a linear
function?)
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