
USACO January Bronze/Silver Post-Contest Explanations

Srinidhi Krishnamurthy

February 2018

1 Bronze: Out of Place

1.1 Full Problem Statement

Feeling ambitious, Farmer John plans to attempt something that never seems to go quite right: he wants
to take a photograph of his entire herd of cows. To make the photograph look nice, he wants the cows to
line up in a single row from shortest to tallest. Unfortunately, right after he has the cows line up this way,
Bessie the cow, always the troublemaker, steps out of line and re-inserts herself at some other location in
the lineup!

Farmer John would like to swap pairs of cows so the entire herd is again lined up properly. Please help
him determine the minimum number of swaps he needs to make between pairs of cows in order to achieve
this goal.

1.2 Input Statement

The first line of input contains N (2 ≤ N ≤ 100). The next N lines describe the heights of the cows as they
are lined up after Bessie makes her move. Each cow height is an integer in the range 1 . . . 1, 000, 000. Cows
may have the same height. Please output the minimum number of times Farmer John needs to swap pairs
of cows in order to achieve a proper ordering. Swaps do not necessarily need to involve adjacent cows in the
ordering.

Please output the minimum number of times Farmer John needs to swap pairs of cows in order to achieve
a proper ordering. Swaps do not necessarily need to involve adjacent cows in the ordering.

1.3 Solution Approach

So usually in Bronze problems, we don’t have to worry about the time complexity. In this case, all we have
to do is work through the sample cases given to understand how to arrive at the algorithm. In this case, we
just setup two arrays, sort one of them, and compare them.

1.4 USACO’s Solution

1 import java . i o . ∗ ;
2 import java . u t i l . ∗ ;
3 pub l i c c l a s s ou to fp l a c e {
4 pub l i c s t a t i c void main (S t r ing [] a rgs) throws IOException {
5 BufferedReader br = new BufferedReader (new Fi leReader (” ou to fp l a c e . in ”)) ;
6 PrintWriter pw = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r (” ou to fp l a c e . out”))) ;
7

8 i n t n = In t eg e r . pa r s e In t (br . readLine ()) ;
9 i n t [] he ight = new in t [n] ;

10 i n t [] s o r t ed = new in t [n] ;
11 f o r (i n t i = 0 ; i < n ; i++) {
12 he ight [i] = In t eg e r . pa r s e In t (br . readLine ()) ;
13 so r t ed [i] = he ight [i] ;
14 }
15 Arrays . s o r t (so r t ed) ;

1

16 i n t swaps = −1;
17 f o r (i n t a = 0 ; a < n ; a++) {
18 i f (s o r t ed [a] != he ight [a]) {
19 swaps++;
20 }
21 }
22 swaps = Math .max(0 , swaps) ;
23 pw. p r i n t l n (swaps) ;
24 pw. c l o s e () ;
25 }
26

27 }

Listing 1: ”Java solution by USACO”

2 Silver: MooTube

2.1 Full Problem Statement

In his spare time, Farmer John has created a new video-sharing service, which he names MooTube. On
MooTube, Farmer John’s cows can record, share, and discover many amusing videos. His cows already have
posted N videos (1 ≤ N ≤ 5000), conveniently numbered 1 . . . N . However, FJ can’t quite figure out how
to help his cows find new videos they might like. FJ wants to create a list of ”suggested videos” for every
MooTube video. This way, cows will be recommended the videos most relevant to the ones they already
watch.

FJ devises a metric of ”relevance,” which determines, as the name suggests, how relevant two videos are
to each other. He picks N − 1 pairs of videos and manually computes their pairwise relevance. Then, FJ
visualizes his videos as a network, where each video is a node and the N − 1 pairs of videos he manually
considered are connected. Conveniently, FJ has picked his N − 1 pairs so that any video can be reached
from any other video along a path of connections in exactly one way. FJ decides that the relevance of any
pair of videos should be defined as the minimum relevance of any connection along this path.

Farmer John wants to pick a value K so that next to any given MooTube video, all other videos with
relevance at least K to that video will be suggested. However, FJ is worried that too many videos will be
suggested to his cows, which could distract them from milk production! Therefore, he wants to carefully set
an appropriate value of K. Farmer John would like your help answering a number of questions about the
suggested videos for certain values of K.

2.2 Input Statement

The first line of input contains N and Q (1 ≤ Q ≤ 5000). The next N−1 lines each describe a pair of videos FJ
manually compares. Each line includes three integers pi, qi, and ri (1 ≤ pi, qi ≤ N, 1 ≤ ri ≤ 1, 000, 000, 000),
indicating that videos pi and qi are connected with relevance ri.

The next Q lines describe Farmer John’s Q questions. Each line contains two integers, ki and vi (1 ≤
ki ≤ 1, 000, 000, 000, 1 ≤ vi ≤ N), indicating that FJ’s ith question asks how many videos will be suggested
to viewers of video vi if K = ki.

Output Q lines. On line i, output the answer to FJ’s ith question.

2.3 Solution Approach

So the best way to approach this question is to draw out the sample and formulate the problem more simply.
When we do this, we find that we have an weighted graph. We want to find the minimum weight over all
the edges on the path between two nodes. We also want to answer more than one query, so we have to keep
complexity (and algorithms) in mind before we write the solution.

To solve this, we can start with a BFS from the source vertex. Along the way, we ignore any edges that
have weight less than the destination weight. While doing this, we can count how many other vertices we
have visited.

2

2.4 USACO’s Solution

1 import java . i o . ∗ ;
2 import java . u t i l . ∗ ;
3 pub l i c c l a s s mootube {
4 pub l i c s t a t i c void main (S t r ing [] a rgs) throws IOException {
5 BufferedReader br = new BufferedReader (new Fi leReader (”mootube . in ”)) ;
6 PrintWriter pw = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r (”mootube . out”))) ;
7 Str ingToken i ze r s t = new Str ingToken i ze r (br . readLine ()) ;
8 i n t n = In t eg e r . pa r s e In t (s t . nextToken ()) ;
9 i n t q = In t eg e r . pa r s e In t (s t . nextToken ()) ;

10 LinkedList<Edge> [] edges = new LinkedLis t [n] ;
11 f o r (i n t i = 0 ; i < n ; i++) {
12 edges [i] = new LinkedList<Edge>() ;
13 }
14 f o r (i n t a = 1 ; a < n ; a++) {
15 s t = new Str ingToken i ze r (br . readLine ()) ;
16 i n t x = In t eg e r . pa r s e In t (s t . nextToken ())−1;
17 i n t y = In t eg e r . pa r s e In t (s t . nextToken ())−1;
18 i n t w = In t eg e r . pa r s e In t (s t . nextToken ()) ;
19 edges [x] . add (new Edge (y , w)) ;
20 edges [y] . add (new Edge (x , w)) ;
21 }
22 f o r (i n t query = 0 ; query < q ; query++) {
23 s t = new Str ingToken i ze r (br . readLine ()) ;
24 i n t th r e sho ld = In t eg e r . pa r s e In t (s t . nextToken ()) ;
25 i n t s t a r t = In t eg e r . pa r s e In t (s t . nextToken ())−1;
26 i n t r e t = 0 ;
27 LinkedList<Integer> queue = new LinkedList<Integer >() ;
28 queue . add (s t a r t) ;
29 boolean [] seen = new boolean [n] ;
30 seen [s t a r t] = true ;
31 whi le (! queue . isEmpty ()) {
32 i n t curr = queue . removeFirst () ;
33 f o r (Edge out : edges [cur r]) {
34 i f (! seen [out . d] && out .w >= thre sho ld) {
35 seen [out . d] = true ;
36 queue . add (out . d) ;
37 r e t++;
38 }
39 }
40 }
41 pw. p r i n t l n (r e t) ;
42 }
43 pw. c l o s e () ;
44 }
45

46 s t a t i c c l a s s Edge {
47 pub l i c i n t d , w;
48 pub l i c Edge (i n t a , i n t b) {
49 d=a ;
50 w=b ;
51 }
52 }
53

54 }

Listing 2: ”Java solution by USACO”

3

