
Union Find

George Tang

21 September 2018

1 Connectivity

1.1 Connected Components

In an undirected graph, we say that two vertices are connected if you can reach one from the other by traversing
a series of edges. Then, a connected component is a subgraph such that any two vertices in the component are
connected.

1

2

3

4

5

6 7

8

9 10

Figure 1: This diagram illustrates a graph with three connected components. Credit: Samuel Hsiang

Determining which components are connected can be done with DFS/BFS in O(V +E) time. Pick a vertex that
has not been visited, mark it with unique identifier and as visited, and recur on all connected neighbors, marking
them with the same identifier. Continue this process until all vertices have been visited.

1.2 Dynamic Connectivity

Dynamic connectivity is an extension of connectivity. We want to be able to add edges and merge components,
but also determine if two vertices are in the same component at any time. For the purpose of this lecture, we will
not consider removing edges.

Specifically, we want to support the following operations.

• find(v) : Determine which component v is in.

• union(u, v) : Connect vertices u and v.

2 Union Find (Disjoint Set Union)

The goal of the union find data structure, aka disjoint set data structure is to solve these queries efficiently. We
discuss two approaches:

• Quick Find : Represent the problem with an array. Every index represents a vertex and holds the component
id. This performs find in O(1) (index lookup) and union in O(N) (iterate through the entire array to change
the elements). This is equivalent to running flood fill for every union operation.

• Quick Union: For each node, we can maintain a parent pointer to one other node that it’s connected to.
Eventually, following these pointers will lead to a root node that points to itself. Since all nodes in the
component point to it, it is the representative element of the component. This forms a collection of trees,
also known as a forest.

1



5

6

7 8

1

2

4

3

9

10

Figure 2: Representation of union-find as a forest. Credit: Samuel Hsiang

3 Quick Union

With quick-find, we update every element in one connected component whenever we perform a union, which requires
us to search the entire array. Instead, quick union takes a lazier approach and only updates the pointer of the root
element. This takes advantage of the interpretation of union-find as a tree.

• find(v): Follow the parent pointer of v until we reach the root and return root id.

• union(u, v): Change the parent pointer of find(u) to point to find(v).

If we number our nodes sequentially, we can represent the pointers as an array.

1 1 1 2 5 5 6 6 9 9

1 2 3 4 5 6 7 8 9 10

Figure 3: Pointer Array. Credit: Samuel Hsiang

Because find traverses the tree until it reaches a root element, its worst-case complexity is O(N), proportional
to the height of the tree. And because union requires us to call find, its complexity is also O(N). This is worse
than Quick-find! But we can significantly improve find by limiting the depth of the tree.

3.1 Weighting

Whenever we perform union, if we keep track of the size of each tree, we can always join a smaller tree to the root
of a larger tree, rather than the other way around. This optimization limits the maximum depth of any tree to
logN . This means that the cost of both find and union are now O(logN).

3.2 Path compression

Intuitively, flattening the tree would make the find operation faster by shortening the number of pointers we need
to traverse. So another optimization we can make is every time we perform find(v), to change v and all of its
parents to point to its root node. This allows us to avoid traversing the same path more than once.

Combining weighting with path compression brings down the cost of find and union to amortized O(α(N)),
where α represents the extremely slowly-growing inverse Ackermann function. For practical purposes, α(N) < 5.
In fact, this is asymptotically optimal: union-find in constant time is impossible.

2



4 Pseudocode

This is a sample implementation of weighted quick-union with path compression. Credit: Samuel Hsiang

Algorithm 1 Union-Find

function Find(v)
if parent(v) is v then

return v
parent(v)← Find(parent(v))
return parent(v)

function Union(u, v)
uRoot← Find(u)
vRoot← Find(v)
if uRoot = vRoot then

return
if size(uRoot) < size(vRoot) then

parent(uRoot)← vRoot
size(vRoot)← size(uRoot) + size(vRoot)

else
parent(vRoot)← uRoot
size(uRoot)← size(uRoot) + size(vRoot)

5 Minimum Spanning Trees

Consider a connected, undirected graph. A spanning tree is a subgraph that is a tree and contains every vertex in
the original graph. A minimum spanning tree is a spanning tree such that the sum of the edge weights of the tree
is minimized.

1

2

3

4

5

4

2

7

6

3

5

4

Figure 4: Figure 4: MST. Credit: Samuel Hsiang

5.1 Kruskal’s Algorithm

We begin with every node being its own disjoint set. We construct a MST by greedily adding edges from lowest
to highest weight. However, a tree is defined as having no cycles (cannot leave a node from an edge and enter
through a different edge), so if two nodes are already in the same component, we disregard that edge. The MST of
n nodes always contains exactly n− 1 edges, so we can stop looking through more edges after adding n− 1 edges
to the MST. Conveniently, union find works perfectly for this. This algorithm requires sorting the edges and thus
has complexity O(ElogE + Eα(V )).

3



Algorithm 2 Kruskal

for all edges (u, v) in sorted order do
if Find(u) 6= Find(v) then

add (u, v) to spanning tree
Union(u, v)

5.2 Example

Moocast (USACO Gold, December 2016)

Farmer John’s Cows (1 ≤ N ≤ 1000) each have a walkie talkie. They will spend X dollars such that each
walkie talkie has transmission radius

√
N . Each cow can communicate another as the cows can relay their message

through some sequence of transmissions. Determine the minimum cost such that every cow can communicate with
another.

5.3 Example 2

Superbull (USACO Silver, February 2015)

Given N ≤ 2000 teams and the ”excitement” caused by a match between every pair of teams, find the most
excitement possible in a tournament. The loser is eliminated after every game, but you get to pick who loses.

6 Monotonic Queries

You are given a graph and a set of chronological queries (by time, value, etc) that ask about the state of the
components at that given state.

All we have to do maintain the state of the components using union find over the chronology. In fact, this is
exactly how we build MSTs (state is weight of edge, query is do we have one component given we follow the rules
for MSTs?).

6.1 Offline Queries

What if they are not in order? If all you need to do is read the queries and answer them within the time limit,
it is an easy extension to monotonic queries. Store the initial order of the queries, sort the queries, and answer
them like monotonic queries. Each answer is mapped to its respective query. Then, loop through the initial order,
extracting the respective stored answers.

6.2 Example

Mootube (USACO Gold, January 2018)

Farmer John created Mootube, where every two connected videos have a relevance value. He wants to filter
content using this metric. Specifically, given a value k and the video the user is currently watching, connected
videos are suggested to a user if their relevance is greater than k. Moreover, this process is recursive, meaning if a
third video not directly connected to the first is relevant to some chain of relevant videos, it is also relevant.

Given 1 ≤ Q ≤ 100000 queries, each with two values, v, k, representing the current video and metric used, how
many relevant videos are there?

4


