
Introduction to Dynamic Programming

Daniel Wisdom
Based on Charles Zhao’s Lecture

October 18, 2018

“Unfortunately, programmer, no one can be
told what DP is. You have to try it for yourself.”

– Stolen from last year’s lecture that stole it from and old SCT lecture that stole it from an older
SCT lecture that stole it from

an even older SCT lecture that adapted it from The Matrix

1 Introduction

Dynamic Programming (DP) is a technique for reducing the runtime of certain kinds of problems.
A problem that can be solved using DP must satisfy two prerequisites:

1. It must have optimal substructures: The solution to the subproblem is part of the solution to
the original problem.

2. It must have overlapping subproblems: The solutions to subproblems are used repeatedly.

2 Examples

2.1 Fibonacci

If you have created a Fibonacci program, you have most likely already used DP. This problem
involves calculating the nth Fibonacci number. Remember that the Fibonacci sequence is defined
as F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2. Here is a naive solution:

Algorithm 1 Fibonacci: Naive

function Fib(n)
if n = 0 or n = 1 then

return n
return Fib(n− 1) + Fib(n− 2)

Since each level of recursion calls itself twice, this results in exponential time complexity. How-
ever, notice that certain computations are repeated multiple times. Therefore, we can improve this
to linear time at the expense of space by caching computations. This use of caching is called the
top-down approach, also known as memoization, because we start from the overall problem and
recursively break it down into subproblems until we reach the base case(s).

1



Algorithm 2 Fibonacci: Top-Down

initialize memo[0 . . . N ]← −1
function Fib(n)

if n = 0 or n = 1 then
return n

if memo[n] > −1 then
return memo[n]

memo[n]← Fib(n− 1) + Fib(n− 2)
return memo[n]

Another approach is the bottom-up approach, which involves starting from the smallest sub-
problems and then gradually combining them into larger subproblems until we reach the solution
to the desired problem.

Algorithm 3 Fibonacci: Bottom-Up

function Fib(N)
initialize dp[0 . . . N ]
dp[0]← 0
dp[1]← 1
for i← 2 . . . N do

dp[i]← dp[i− 1] + dp[i− 2]

return dp[N ]

Both of these DP solutions run in linear time and linear space, which is far better than the naive
solution’s exponential time complexity. In general, DP reduces the time complexity of problems
from exponential to polynomial.

2.2 Unbounded Knapsack Problem

Now let’s try a slightly harder problem. The knapsack problem is the canonical DP problem and
is often present in introductory algorithms contests. Given N types of objects, with the ith type
having value V[i] and weight W[i], which objects do we select to maximize the value without
exceeding the knapsack’s weight capacity C? Note that we can take multiple copies of the same
type of object, hence the name “unbounded.”

The most difficult part of this problem, as with most DP problems, is determining how to divide
the problem into overlapping subproblems. Let’s define memo[c] as the solution to the subproblem
with capacity c. Note that adding an object to the knapsack is analogous to reducing the capacity
of the knapsack. At each step, we want to add an object such that the sum of the value of the
object and the value of the smaller capacity knapsack is maximized. Thus, the knapsack problem
exhibits optimal substructures, which is one of the characteristics of a DP problem. Specifically,
memo[c] = max(memo[c], memo[c-W[i]] + V[i]), looping i from 1 to N and with memo[0] = 0.

2



Algorithm 4 Unbounded Knapsack

initialize memo[0 . . . N ]← −1
memo[0]← 0
function Knapsack(c)

if memo[c] > −1 then . Already computed this subproblem
return memo[c]

for i← 1 . . . N do
if c−W [i] > 0 then . Check if the object can fit

memo[c]← max(memo[c],Knapsack(c−W [i]) + V [i])

2.3 0-1 Knapsack Problem

There are several variations of the knapsack problem. In the 0-1 knapsack problem, we can either
take 1 copy of an item or not take it at all. Let’s define memo[i][c] as the solution to the subproblem
considering only the available objects up to the ith object and with a knapsack of capacity c.

Algorithm 5 0-1 Knapsack

initialize memo[0 . . . N ][0 . . . C]← −1
memo[0]← 0
function Knapsack(i, c)

if i = N or c = 0 then . No more objects or bag is full
return 0

if memo[i][c] > −1 then . Already computed this subproblem
return memo[i][c]

if W [i] > c then . Cannot fit this object
memo[i][c]← Knapsack(i + 1, c) . Skip this object

else
memo[i][c]← max(Knapsack(i + 1, c), V [i] + Knapsack(i + 1, c−W [i]))

return memo[i][c]

3 Top-Down vs. Bottom-Up

As we saw with Fibonacci, there are generally two approaches to implementing DP. Both approaches
use tables, but the bottom-up DP table is filled differently from the top-down DP memo table. In
the top-down approach, the memo table is only filled as needed through recursion. In the bottom-up
approach, the table is filled iteratively in an order such that the previous values needed to compute
the current value have already been computed. Although both approaches will have the same time
complexity and in general which approach you use is a matter of preference, it is worth noting the
advantages and disadvantages of each, which may become important at higher level competitions.

As mentioned before, the top-down approach only computes the necessary subproblems. How-
ever, there is overhead due to recursion. Therefore, the bottom-up approach is faster if many
subproblems are revisited, because there is no overhead due to recursion. However, the bottom-up
approach may compute some unnecessary subproblems. Another advantage of the bottom-up ap-
proach is that it has opportunities for optimization that the top-down approach does not, such as
the sliding window trick.

3



4 General Strategy1

1. Identify state variables. These are the variables that define subproblems, i.e., they are
the arguments to the recursive function. In general, the more state variables there are, the
slower the algorithm. For example, if we have state dp[i][j][k] where i ranges from 0 to A,
j from 0 to B, and k from 0 to C, then the bottom-up approach must take at least O(ABC)
time.

2. Determine base case(s). Because DP solves recursive problems, there has to be a base
case.

3. Determine the recurrence relation. This is the relationship between the overall problem
and the subproblems (remember, DP problems must exhibit optimal substructures). Also,
these subproblems must overlap.

5 Problems

The best way to get better at DP is to practice!

1. Max Range Sum. Given an integer array, determine its maximum range sum, i.e., the
maximum range sum query.

2. Longest Increasing Subsequence. Given a sequence of numbers, determine its longest
increasing subsequence. Note that the subsequence is not necessarily contiguous.

3. Coin Change. Given n types of coin denominations with values V[0], V[1], . . . , V[n-1],
determine the minimum number of coins needed to make change for an amount of money C.
Assume V[0] = 1 so that you will always be able to make change for any amount C.

1This section borrows heavily from Ryan Jian’s lecture.

4


