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1 Introduction

Given a list of data, efficiently process the following range queries across any interval:

• Find the sum

• Find the min/max

• Add a value to each element

A segment tree is a powerful data structure for storing intervals, or segments. Segment trees can
efficiently answer dynamic range queries. We will use a segment tree to solve the Range Minimum
Query (RMQ) problem and the Range Sum Query (RSQ), which is the problem of finding the minimum
element/sum of elements in an array within a given range i to j. Other range queries include range
GCD, or product, and more. Moreover, all of our segment trees will support interval updates.

2 Construction

A segment tree is a balanced binary tree in which each leaf represents an element in the array. The
root of the tree represents segment [0, n − 1], and for each segment[l, r] represented by the node at
index p, the left child represents the segment [l, (l + r)/2] and the right child represents the segment
[(l + r)/2 + 1, r]. In the case of RMQ, “represents” means the value of the node is the minimum of
the segment it represents. For example, for the array [−1, 3, 4, 0, 2, 1], the tree would look as follows:
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Constructing this tree takes O(n) time and O(n) space. In the pseudocode below, we build the
tree recursively. The tree is represented as an array st where index 1 is the root of the tree and the
left and right children of index p are indices 2 × p and (2 × p) + 1, respectively. l and r are the left
and right bounds of the current segment, respectively.

Note, however, that we can construct this tree by updating length-one ranges n times. This gives
us a runtime of O(n log n) for construction, which is usually fast enough.

∗Based on Justin Zhang’s Segment Tree lecture
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Algorithm 1 Segment Tree Construction

function Build(p, l, r)
if l = r then

st[p]← A[l]
else

pl← 2× p
pr ← 2× p + 1
Build(pl, l, (l + r)/2)
Build(pr, (l + r)/2, r)
return min(st[pl], st[pr])

3 Solving Queries

There are three cases that we must consider when traversing a segment tree: when part of the segment
represented by the node is within the query; when the segment is completely within the query; and
when the segment is completely outside of the query. If part of the segment is within the query, we
must check both of the node’s children. If the segment is completely within the query, we return
the node’s value, which is the minimum of the segment it represents. If the segment is completely
outside of the query, we return some very large number. In the pseudocode below, we traverse the
tree recursively.

With the segment tree built, solving queries takes O(log n) time. This is because segment trees
allow us to avoid traversing unrelated parts of the tree. In the worst case, in which only part of every
segment we reach is within the query, we traverse two root-to-leaf paths, taking O(2×log n) = O(log n)
time.

Algorithm 2 Range Minimum Query Using a Segment Tree

function RMQ(p, l, r, i, j)
if i > r or j < l then

return ∞
if l >= i and r <= j then

return st[p]

pl← 2× p
pr ← 2× p + 1
minl← RMQ(pl, l, (l + r)/2, i, j)
minr ← RMQ(pr, (l + r)/2 + 1, r, i, j)
return min(minl,minr)

Algorithm 3 Range Sum Query Using a Segment Tree

function RSQ(p, l, r, i, j)
if i > r or j < l then

return 0
if l >= i and r <= j then

return st[p]

pl← 2× p
pr ← 2× p + 1
return RSQ(pl, l, (l + r)/2, i, j) + RSQ(pr, (l + r)/2 + 1, r, i, j)
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4 Lazy propagation

With a segment tree, we can handle point updates, or updates of individual elements in log(N) time
(find leaf node and recurse up). But what if we also wanted to perform range updates, or updates
of a range of elements? If we want to increment the value of m contiguous elements, this will take
O(m log n) time.

Fortunately, we can do better. With our current data structure, performing a range update will
require modifying the values of m elements, so we need to change our data structure. To avoid
recursing all the way to the bottom of the tree for all m elements, we can store some information in
higher nodes instead.

Let’s say we’re performing a range update on the range u, and we’re examining the segment s.
The key insight is that if s is contained within u, then we can simply set a lazy value for s instead of
recursing on its children. When a lazy value is set, it means that the values of each of the children
of that node should be incremented by that value.
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Figure 1: Example of a segment tree with lazy values stored underneath. The highlighted values
reflect the values updated after calling update(3, 12, 2). Credit: Samuel Hsiang.

However, if we encounter a lazy value while performing a query or an update, however, we need
to push the value by moving the lazy value into its children, and updating the current node’s sum
correspondingly. But because we only push once per node, these operations still only take O(log n).

We can also use this technique to implement the range minimum query (RMQ) problem. A full
implementation of both is provided by the solution to Counting Haybales (USACO December 2015,
Platinum) at http://www.usaco.org/current/data/sol_haybales_platinum_dec15.html.

5 Lattices and Segment Trees

Segment trees can be applied in 2 dimensional geometric problems. Imagine a 2D grid composed on
points, where each have a specific value. Now image a line sweeping across it, and at every instance we
are asked about the points that have already been ’seen’. Segment trees allow us to quickly determine
the properties of ’seen’ points.
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5.1 Why did the cow cross the road II

We can start at any lattice point, and we can move to another lattice point if and only if that lattice
point has x and y coordinates that strictly exceed that of the point we are currently at. We wish to
compute the maximum number of lattice points we can visit.

Each lattice points stores the maximum number of points that can be visited under the condition
that it is the last lattice point visited. As we move to a new lattice points, we insert all lattice points
we just encountered at the instance into the segment trees (intervals are based on y value), and query
the max of those points that have y value less than that of the current point (range = [0, y]).

6 Problems

1. Counting Haybales (see link above)

2. You’re given an array of length 105, consisting of 0’s and 1’s. Answer 105 operations, where each
operation is either to invert the bits from a given i to j or to count the number of set bits from
i to j.

3. You’re given an array t of length 217, with non-negative integers less than 230. Let’s define an
OR(a) to be the result after bitwise-OR’ing pairs of elements in an array a (OR(a) := a[1] OR
a[2], a[3] OR a[4], ...) and XOR(a) to be the result after bitwise-XOR’ing pairs of elements in an
array a (XOR(a) := a[1] XOR a[2], a[3] XOR a[4], ...). V(a) is then defined to be the final value
after alternating the OR and XOR operations (beginning with OR) on an array a until there is
one value left: OR(XOR(OR(XOR(...OR(a)...)))). Answer 105 operations, where each operation
sets the value of t at index i to a new value and then calculates V(t) (Codeforces 339D).

4. You’re given an array of length 105. Answer 5 × 104 queries, where each query either asks to
print the sum of all elements from a given index l to a given index r or to apply a bitwise-XOR
to all elements between l and r with a value x (Codeforces 242E).
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