Binary Indexed Trees

Daniel Wisdom

November 302018

1 Introduction

A Binary Index Tree (BIT), also known as a Fenwick Tree, is used for range sums (usually). Namely, a BIT can do element updates and prefix sums ($a[1]+a[2]+\ldots+a[i]$; we one-index BITs for implementation-specific reasons) in $O(\log n)$. This is a tradeoff between a $O(n)$ update $/ O(1)$ query prefix-sum solution and the $O(1)$ update $/ O(n)$ query naive solution.

BITs are very useful, especially for their simple implementation.

2 BITs

1	4	6	-2	3	-10	2	2	0	12	4	1	-1	6	5	2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Figure 1: A sample array.
BITs rely on the idea that an integer can be decomposed into powers of two. Given an index i, we can find these powers of two by writing i in binary. Then, we keep turning off the lowest bit until we reach zero. Say we want to find the prefix sum $a[1]+a[2]+\ldots+a[14]$:

$$
14 \rightarrow 1110 \rightarrow 1100 \rightarrow 1000 \rightarrow 0
$$

How do we find the prefix sum with this?
Say we just went from $1110 \rightarrow 1100$. We just jumped from index $14 \rightarrow 12$. We can add the elements with indices 13 and 14 to a running sum, then recur on 12:

$$
1110 \text { (14) } \xrightarrow[{\text { add } a[13]+a[14}]]{ } 1100 \text { (12) } \xrightarrow[{\text { add } a[9]+\ldots+a[12}]]{ } 1000 \text { (8) } \xrightarrow[{\text { add } a[1]+\ldots+a[8}]]{ } 0
$$

Notice that every "step" (1110, 1100, and 1000), there's a unique range of indices denoted. That is, 1110 uniquely denotes indices 1101 and 1110 , or all numbers between the 1110 and $1+(1110$ with the bottom bit removed). So we can map every number to a range of indices, and store the sum beforehand; 1110 stores $a[13]+a[14]$. See the illustration below.

2.1 Query

We discussed query above. But how do we find the lowest bit?
Taking advantage of the two's complement system ($-1=1 \ldots 1111_{2},-2=1 \ldots 1110_{2}$ and so on), we can do this very easily. Say we're using $14=1110_{2} .-14=0010_{2}$ (with a bunch of ones in front). If we bitwise AND these two together, we get only the lowest bit set. This holds true in a general sense: let $i=(a 1 b)_{2}$, where a and b are parts of the binary number, and the one represents the lowest bit set. Then the negative is as follows: $-i=\sim(a 1 b)_{2}+1=\sim a 0 \sim b+1$. But b must consist of only zeros, since it's after the lowest set bit. Therefore ${ }^{\sim} b+1=100 \ldots$ Thus, we get $-i=\left({ }^{\sim} a 1 b\right)_{2}$. Bitwise AND-ing with i, we clearly see that only the lowest bit is set.

A C++ implementation is shown below.

```
int query(int i) {
    int ans = 0;
    for (; i>0; i-=(i & - i ))
        ans += a[i];
    return ans;
}
```

Clearly, to do range queries, we can subtract in the same way we do with regular prefix sums:

```
int range(int i, int j) {
    return query(j) - (i>1?query (i - 1):0);
}
```


2.2 Update

To update (add a value v) at a given index i, we want to add the value to all segments "above" i. Here I mean "above" in the sense of the diagram above - all segments that contain i.

Let's take 9 . The sequence for segments "above" 9 is:

$$
9(1001) \rightarrow 10(1010) \rightarrow 12(1100) \rightarrow 16(10000) .
$$

Notice that we're simply adding the lowest bit every time (why?). Then for each index we visit, we add v to the value at this segment. Thus, the implementation is quite similar to query.

```
int update(int i, int v) {
    for (; i<=N; i += (i & - i))
        a[i] += v;
}
```

Note that for both update and query, we're only going through each bit once. Thus, the complexity is $O(\log n)$.

2.2.1 Range Updates

Range updates, where we add some number to all elements on $[l, r]$ are a bit more involved, but can also be done in $O(\log n)$. The idea is to keep two BITs. Remember, we one-index BITs.

Let's say we want to find a given prefix sum to index i (to find the range sum we can still subtract the prefix sums). To do this, we find all ranges that begin before i. Then, the answer is:

$$
\sum_{\text {ranges }} \max (i, r) * v-(l-1) * v
$$

where r is the right endpoint of a given range, l is the left, and v is the value. To calculate this, we can use two BITs. BIT1.query(w) will give the value of $a[w]$.

We will use BIT1.query $(\mathrm{w})^{*} \mathrm{w}$ as a starting point for the prefix sum. There are two errors to account for:

- The range does not start at index 1. BIT1.query $(\mathrm{w})^{*} \mathrm{w}$ assumes the active ranges start from 1 . Update 3 fixes this.
- The range started and ended before w. BIT1.query $(\mathrm{w})^{*}$ w does not include any contribution from that range. Update 4 fixes this.

Specifically, here's how we'd update:

1. BIT1.update(l, v). All queries of BIT1 after (and including) l need to increase by v.
2. BIT1.update(r+1, -v$)$. Queries of BIT1 past r should not be affected by this new interval. This cancels out Update 1 for everything past r.
3. BIT2.update $\left(\mathrm{l},-(\mathrm{l}-1)^{*} \mathrm{v}\right)$. BIT1.query $(\mathrm{w})^{*}$ w assumed the range started at 1 . We subtract out (l-1)*v, the exact amount BIT1.query $(\mathrm{w})^{*}$ w over counted.
4. BIT2.update $\left(\mathrm{r}+1, \mathrm{r}^{*} \mathrm{v}\right)$. The proper value from this range is $(r-l+1) * v$. To cancel update 3 and give the proper value add $r * v$ because $r * v-(l-1) * v=(r-l-1) * v$.

To query $a[1]+\ldots+a[w]$: BIT1.query $(\mathrm{w})^{*}{ }_{\mathrm{w}}+\operatorname{BIT} 2 . q u e r y(\mathrm{w})$. We can initialize the BITs by using a size 1 range update for every initial value. This is still $O(n \log n)$ construction time.

3 Problems

1. You're given $n\left(1 \leq n \leq 10^{5}\right)$ horizontal line segments, each with inclusive endpoints $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ where $-10^{9} \leq x_{1} \leq x_{2} \leq 10^{9}$. Each line segment has a value $v\left(-10^{9} \leq v \leq 10^{9}\right)$.
Answer each of $q\left(1 \leq q \leq 10^{5}\right)$ queries. Each query is of the form x^{\prime}, a, b, and asks you to sum the values of the a-th to the b-th (sorted by increasing y) line segments at the vertical line $x=x^{\prime}$.
2. (Brian Dean, 2012) FJ has set up a cow race with $\mathrm{N}(1 \leq N \leq 100,000)$ cows running L laps around a circular track of length $\mathrm{C}(1 \leq L, C \leq 25,000)$. The cows all start at the same point on the track and run at different speeds, with the race ending when the fastest cow has run the total distance of $L * C$. FJ notices several occurrences of one cow overtaking another. Count the total number of crossing events during the entire race.
3. (Brian Dean, 2011) Farmer John has lined up his $\mathrm{N}(1 \leq N \leq 100,000)$ cows each with height $H_{i}\left(1 \leq H_{i} \leq\right.$ $1,000,000,000)$ to take a picture of a contiguous subsequence of the cows, such that the median height is at least a certain threshold $\mathrm{X}(1 \leq X \leq 1,000,000,000)$. Count the number of possible subsequences.
4. (SPOJ BRCKTS) Given a bracket expression of length $\mathrm{N}(1 \leq N \leq 30,000)$, process M operations. There are two types of operations, a replacement, which changes the i-th bracket into its opposite, and a check, which determines whether a bracket expression is correct.
