
Lowest Common Ancestor

Given by George Tang, Written by Daniel Wisdom and Older SCT Captains

February 14 2019

1 Introduction

If we are given an undirected graph G that contains no cycles, then we may designate any one of its vertices
as the root. By rooting the tree, we give all of the edges the natural direction of pointing towards the root.
Additionally, we can define the height of a vertex as its distance to the root. The LCA, or Lowest Common
Ancestor, problem involves finding the node of maximum height that is an ancestor of two given nodes.

1

2 3

5 6

8 9

7

10

12 13

11

4

2 DFS

Before we begin finding the LCA, it is in our best interest to be able to calculate the height of each node
(for reasons that will become apparent later). To do this, we can simply do a DFS starting at the root. This
has complexity O(N). We will use h(u) for the height of node u.

3 Naive Solution

Supposed we want to find the LCA of nodes u and v such that h(u) > h(v). Notice that the LCA cannot be
any node with height greater than h(v), so we repeatedly reassign u with its parent until u and v have the
same height. Now, we repeatedly reassign both u and v to their parents until they point to the same node.
This node is the LCA of u and v. This algorithm is equivalent to moving u and v one level up at a time
until they match.

Note that this has worst case time complexity O(N). This occurs when the tree is effectively a linked
list. Additionally, this algorithm requires O(N) preprocessing because we must calculate the heights of each
node. Unfortunately, many problems will require us to perform multiple LCA queries, so O(N) is too slow.

1



4 2n Jump Pointers

Based on the previous two solutions, we would now like to develop an algorithm that balances both pre-
processing and query time. Consider the N × logN table A, where A(i, j) represents the node that is 2j

steps above node i. We can compute the contents of the table with the following dynamic programming
formulation:

A(i, 0) = parent(i)

A(i, j + 1) = A(A(i, j), j)

The recurrence relation is analogous to first moving 2j steps to node A(i, j), and then moving an additional
2j steps to traverse a total of 2j+1 steps above i. Thus, A can be computed in O(N logN).

Now, to actually find the LCA of u and v, we employ a similar approach taken in the first Naive
Solution, but using our 2n jump pointer table. Assume h(u) > h(v) and let d = h(u)−h(v) be the difference
in height. Note that d can be written as a sum of at most log d unique powers of 2 (Hint: consider the binary
representation of d). Since A tells us how to move nodes upwards in increments of powers of two, this means
that u can be moved d steps upwards by making log d lookups in A. Once u and v are at the same height,
we repeatedly move them upwards by the largest power of 2 such that u and v do not point to the same
node. This works because if A(u, i) 6= A(v, i), then LCA(u, v) = LCA(A(u, i), A(v, i)). In this manner, we
can repeatedly reduce the distance from u and v to LCA(u, v) by a factor of at least two. Thus, this takes
O(logN) lookups in A, so the complexity of each LCA query is O(logN).

5 Another View of LCA

Here I will present another O(logN) solution to LCA which you may find easier to code. Along the path
from node u to v the node with minimum height must be the LCA of u and v. This means LCA(u,v) can
be found by a range min query of the path from u to v.

Now we will do a traversal of the graph. This traversal will create two things: a list of heights and a
mapping of each node to the first index at which it appears in the list.

Algorithm 1 Traversal

function traverse(node u)
index[u] = current list size
Append h(u) to the list
for each child v of u do

traverse(v)
Append h(u) to the list

The traversal will always produce a list of 2N − 1 elements, so we can allocate an array in the beginning
and avoid dynamic arrays.

The important property of this traversal is that for every pair of nodes u and v, LCA(u,v) will appear
at least once in the list between any two occurrences of u and v. There will be nodes listed between u and v
which are not on the path from u to v, but they will always have a larger height than the LCA. This means
a range min query from an occurrence of u to an occurrence of v will find the LCA(u,v). Range min queries
can be answered by Segment Trees in O(N logN) preprocessing and O(logN) query time.

6 Problems

1. USACO December 2015, Platinum Contest Problem 1, Max Flow

Farmer John has installed a new system of N-1 pipes to transport milk between the N stalls in his
barn (2 ≤ N ≤ 50, 000), conveniently numbered 1. . . N. Each pipe connects a pair of stalls, and all
stalls are connected to each-other via paths of pipes. FJ is pumping milk between K pairs of stalls
(1 ≤ K ≤ 100, 000). For the ith such pair, you are told two stalls si and ti, endpoints of a path along

2



which milk is being pumped at a unit rate. FJ is concerned that some stalls might end up overwhelmed
with all the milk being pumped through them, since a stall can serve as a waypoint along many of the
K paths along which milk is being pumped. Please help him determine the maximum amount of milk
being pumped through any stall. If milk is being pumped along a path from si to ti, then it counts
as being pumped through the endpoint stalls si and ti, as well as through every stall along the path
between them.

2. Codeforces 702E Analysis of Paths in Functional Graph

You are given a directed graph of N nodes. Every node has exactly one edge leaving it, with a specified
weight. There may be cycles in the graph. There is exactly one path of length (1 ≤ k ≤ 100, 000) from
every node. For the length k path from node i, quickly find the sum and minimum edge weight along
the path.

3


