
Binary Indexed Trees

Patrick Zhang

November 2019

1 Introduction to Range Queries

Range Queries is a very common type of problem that is often seen at the Gold and Platinum levels. They often
involve the use of data structures. Here is a very basic range queries problem:

You are given an array of length N(1 ≤ N ≤ 100000) integers. Then, you are given N queries. There are two
types of queries:

1. Given two integers i and j, change the ith number in the array to j.

2. Given an integer l and r, output the sum of the numbers between the lth and rth numbers in the array.

2 Introduction to Binary Indexed Trees

A Binary Index Tree (BIT), also known as a Fenwick Tree, is used for range sums (usually). Namely, a BIT can
do element updates and prefix sums (a[1] + a[2] + ...+ a[i]; we one-index BITs for implementation-specific reasons)
in O(log n). This is a tradeoff between a O(n) update/O(1) query prefix-sum solution and the O(1) update/O(n)
query naive solution.

BITs are very useful, especially for their simple implementation.

3 BITs

1 4 6 -2 3 -10 2 2 0 12 4 1 -1 6 5 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1: A sample array.

BITs rely on the idea that an integer can be decomposed into powers of two. Given an index i, we can find
these powers of two by writing i in binary. Then, we keep turning off the lowest bit until we reach zero. Say we
want to find the prefix sum a[1] + a[2] + ... + a[14]:

14→ 1110→ 1100→ 1000→ 0

How do we find the prefix sum with this?
Say we just went from 1110 → 1100. We just jumped from index 14 → 12. We can add the elements with

indices 13 and 14 to a running sum, then recur on 12:

1110 (14) −−−−−−−−−−→
add a[13]+a[14]

1100 (12) −−−−−−−−−−−→
add a[9]+...+a[12]

1000 (8) −−−−−−−−−−−→
add a[1]+...+a[8]

0

Notice that every “step” (1110, 1100, and 1000), there’s a unique range of indices denoted. That is, 1110 uniquely
denotes indices 1101 and 1110, or all numbers between the 1110 and 1 + (1110 with the bottom bit removed). So
we can map every number to a range of indices, and store the sum beforehand; 1110 stores a[13] + a[14]. See the
illustration below.

1

3.1 Query

We discussed query above. But how do we find the lowest bit?
Taking advantage of the two’s complement system (−1 = 1...11112,−2 = 1...11102 and so on), we can do

this very easily. Say we’re using 14 = 11102. −14 = 00102 (with a bunch of ones in front). If we bitwise AND
these two together, we get only the lowest bit set. This holds true in a general sense: let i = (a1b)2, where a
and b are parts of the binary number, and the one represents the lowest bit set. Then the negative is as follows:
−i =˜(a1b)2 + 1 =˜a0 ˜ b + 1. But b must consist of only zeros, since it’s after the lowest set bit. Therefore
˜b + 1 = 100... Thus, we get −i = (˜a1b)2. Bitwise AND-ing with i, we clearly see that only the lowest bit is set.

A C++ implementation is shown below.

int query (int i) {
int ans = 0 ;
for (; i >0; i−=(i & − i))

ans += a [i] ;
return ans ;

}

Clearly, to do range queries, we can subtract in the same way we do with regular prefix sums:

int range (int i , int j) {
return query (j) − (i >1?query (i −1) : 0) ;

}

3.2 Update

To update (add a value v) at a given index i, we want to add the value to all segments “above” i. Here I mean
“above” in the sense of the diagram above – all segments that contain i.

Let’s take 9. The sequence for segments “above” 9 is:

9 (1001)→ 10 (1010)→ 12 (1100)→ 16(10000).

Notice that we’re simply adding the lowest bit every time (why?). Then for each index we visit, we add v to
the value at this segment. Thus, the implementation is quite similar to query.

int update (int i , int v) {
for (; i<=N; i += (i & − i))

a [i] += v ;
}

Note that for both update and query, we’re only going through each bit once. Thus, the complexity is O(log n).

3.2.1 Range Updates

Range updates, where we add some number to all elements on [l, r] are a bit more involved, but can also be done
in O(log n). The idea is to keep two BITs. Remember, we one-index BITs.

2

Let’s say we want to find a given prefix sum to index i (to find the range sum we can still subtract the prefix
sums). To do this, we find all ranges that begin before i. Then, the answer is:∑

ranges

max(i, r) ∗ v − (l − 1) ∗ v

where r is the right endpoint of a given range, l is the left, and v is the value. To calculate this, we can use two
BITs. BIT1.query(w) will give the value of a[w].

We will use BIT1.query(w)*w as a starting point for the prefix sum. There are two errors to account for:

• The range does not start at index 1. BIT1.query(w)*w assumes the active ranges start from 1. Update 3
fixes this.

• The range started and ended before w. BIT1.query(w)*w does not include any contribution from that range.
Update 4 fixes this.

Specifically, here’s how we’d update:

1. BIT1.update(l, v). All queries of BIT1 after (and including) l need to increase by v.

2. BIT1.update(r+1, -v). Queries of BIT1 past r should not be affected by this new interval. This cancels out
Update 1 for everything past r.

3. BIT2.update(l, -(l-1)*v). BIT1.query(w)*w assumed the range started at 1. We subtract out (l-1)*v, the
exact amount BIT1.query(w)*w over counted.

4. BIT2.update(r+1, r*v). The proper value from this range is (r − l + 1) ∗ v. To cancel update 3 and give the
proper value add r ∗ v because r ∗ v − (l − 1) ∗ v = (r − l − 1) ∗ v.

To query a[1] + ... + a[w]: BIT1.query(w)*w + BIT2.query(w). We can initialize the BITs by using a size 1
range update for every initial value. This is still O(n log n) construction time.

4 Problems

1. (Sleepy Cow Sorting, USACO Gold January 2019) You are given a sequence of numbers numbered from 1 to
N(1 ≤ N ≤ 10000). You want to sort the numbers by shifting the first number in the sequence some distance
D each move. Find the sequence of Ds such that the number of moves is minimizd.

2. You’re given n (1 ≤ n ≤ 105) horizontal line segments, each with inclusive endpoints (x1, y) and (x2, y) where
−109 ≤ x1 ≤ x2 ≤ 109. Each line segment has a value v (−109 ≤ v ≤ 109).

Answer each of q (1 ≤ q ≤ 105) queries. Each query is of the form x′, a, b, and asks you to sum the values of
the a-th to the b-th (sorted by increasing y) line segments at the vertical line x = x′.

3. (Brian Dean, 2012) FJ has set up a cow race with N (1 ≤ N ≤ 100, 000) cows running L laps around a circular
track of length C (1 ≤ L,C ≤ 25, 000). The cows all start at the same point on the track and run at different
speeds, with the race ending when the fastest cow has run the total distance of L ∗ C. FJ notices several
occurrences of one cow overtaking another. Count the total number of crossing events during the entire race.

4. (Brian Dean, 2011) Farmer John has lined up his N (1 ≤ N ≤ 100, 000) cows each with height Hi (1 ≤ Hi ≤
1, 000, 000, 000) to take a picture of a contiguous subsequence of the cows, such that the median height is at
least a certain threshold X (1 ≤ X ≤ 1, 000, 000, 000). Count the number of possible subsequences.

5. (SPOJ BRCKTS) Given a bracket expression of length N (1 ≤ N ≤ 30, 000), process M operations. There
are two types of operations, a replacement, which changes the i-th bracket into its opposite, and a check,
which determines whether a bracket expression is correct.

5 Extra

Here is a really nice tutorial if you are still unclear about how BIT works. It also has example code.
https://www.hackerearth.com/practice/notes/binary-indexed-tree-or-fenwick-tree/

3

