2019-12-20 Gold Review

Joshua Zhang, Pranav Mathur, and Ray Bai
December 2019

1 Problem 1: Milk Pumping

1.1 Problem Statement

Farmer John has recently purchased a new farm to expand his milk pro-
duction empire. The new farm is connected to a nearby town by a network of
pipes, and FJ wants to figure out the best set of these pipes to purchase for his
use in pumping milk from the farm to the town.

The network of pipes is described by N junction points (endpoints of
pipes), conveniently numbered 1... N (2 < N < 1000). Junction point 1 repre-
sents FJ’s farm and junction point N is the town. There are M bi-directional
pipes (1 < M < 1000), each joining a pair of junction points. The ith pipe costs
¢; dollars for FJ to purchase for his use, and can support a flow rate of f; liters
of milk per second.

FJ wants to purchase a single path worth of pipes, where the endpoints of
the path are junctions 1 and N. The cost of the path is the sum of the costs of
the pipes along the path. The flow rate along the path is the minimum of the
flow rates of the pipes along the path (since this serves as a bottleneck for the
flow traveling down the path). FJ wants to maximize the flow rate of the path
divided by the cost of the path. It is guaranteed that a path from 1 to IV exists.

INPUT FORMAT (file pump.in):

The first line of input contains N and M. Each of the following M lines
describes a pipe in terms of four integers: a and b (the two different junctions
connected by the pipe), ¢ (its cost), and f (its flow rate). Cost and flow rate
are both positive integers in the range 1...1000.

OUTPUT FORMAT (file pump.out):

Please print 10° times the optimal solution value, truncated to an integer
(that is, rounded down to the next-lowest integer if this number is not itself an
integer).



1.2 Key Observation

The network of pipes can be easily represented by a graph, where the
pipes are the edges and the junctions are vertices. If we set the weight of each
edge on the graph to the cost it takes FJ to use it, we can run a shortest path
algorithm, such as Dijkstras or Bellman-Ford to find the cost of the cheapest
path from the farm to the town in O(M log N) time. If flows did not matter(e.g.
all the flows are 1) then the optimal path would just be the cheapest one found
by these algorithms. However, when we factor in different flow weights into
this problem, we realize the that cheapest path may not always be the best. A
path using pipes (1,1) and (2,1) (where flow is the first number and cost is the
second) is cheaper than a path using (20,10) and (20,9), but the second path
has a higher flow to cost ratio. So, how do we account for differing edge weights
in our problem?

1.3 Solution 1: Deleting Minimum Flow Edges

We notice that, for any given network of pipes, the minimum flow possible
for any path in that network is the minimum flow of any individual pipe on the
graph. This gives us a lower bound for our flow on our graph. If we remove the
edge with the lowest flow, our flow is now bounded by the second lowest flow in
our graph.

Going off of this observation and the earlier one in section 2, we can build
a solution to solve the problem. Before we begin, we sort our edges in non-
decreasing order by flow. We run Dijkstras on our graph to get the cost of the
cheapest path, then use this value and the smallest flow value in the graph to
compute a ratio of flow to cost. Next, we remove the edge with the lowest flow
and repeat the previous step to generate a new ratio. When we reach the point
where a path to the town from the farm no longer exists, we stop. We keep a
running maximum of flow to cost ratios over this process, and print that as our
answer.

Algorithm 1 Deleting Minimum Flow Edges

1: sort(edges)

2: max 0

3: while path exists do

4 cost < dijkstras()

5 remove lowest flow edge
6 flow + lowest flow

7: if flow/cost > max then
8: max < flow/cost

9:

print |maz - 10°]

Since Dijkstras takes O(M log N) time and we need to run it up to M —1
times, we get an overall complexity of O(M?log N), and since N, M < 1000,
this runs in time.



1.4 Solution 2: Modified Dijkstras

To begin, we initialize a matrix dpl[i][j] with i and j both being equal to 1000
(the bounds of N and M respectively) and fill it with very large numbers(> 10°
will do). Let dp(i,j) represent the minimum cost of reaching vertex ¢ with flow
j. When we run Dijkstras, instead of checking whether our cost to reach the
vertex is lower than all previous attempts, we check if our cost to reach a vertex
with a certain flow value is lower than that of all previous attempts to reach the
vertex with the same flow value. Each time we go from any node to the end, we
calculate the ratio of that path and update a running maximum of ratios. Note
that this means that the "nodes” we put in our PriorityQueue during Dijkstras
need to contain the vertex, the cost, and the flow.

Algorithm 2 Modified Dijkstras

1. dp < int[1000][1000]

2: for all + < 1000, 5 < 1000 do

3 dpfi][j] < 10° +1

4: max <0

5: pq 4 priority queue

6: add starting node to pq

7: while pq is not empty do

8: curr < poll pq

9: if curr’s vertex is N then
10: maz < max(maz, curr’s cost/dp[N — 1][curr’s flow])
11: for all edges connected to curr’s vertex do
12: con < connected node
13: flow < min(curr’s node, con’s node)
14: cost < dp[curr’s node][curr’s flow] + con’s cost
15: vert <— con’s vertex
16: if cost < dp[vert][flow] then
17: dplvert][flow] + cost
18: add(vertez(cost, flow,vert))

19: print |max - 10°]

Dijkstras takes O(M log N) time and we ran it only once, we get an
overall complexity of just O(FN + M log N)(The FN is from making our dp
array). This is faster than our previous solution, however, I personally feel like
this is less intuitive than the previous solution and slightly trickier to come up
with and implement.



2 Problem 2: Milk Visits

2.1 The Problem

Farmer John is planning to build N (1 < N < 105) farms that will be connected
by N —1 roads, forming a tree (i.e., all farms are reachable from each-other, and
there are no cycles). Each farm contains a cow with an integer type T; between
1 and N inclusive.

Farmer John’s M friends (1 <M< 105) often come to visit him. During a
visit with friend ¢, Farmer John will walk with his friend along the unique path
of roads from farm A; to farm B; (it may be the case that A; = B;). Addition-
ally, they can try some milk from any cow along the path they walk. Since most
of Farmer John’s friends are also farmers, they have very strong preferences
regarding milk. Each of his friends will only drink milk from a certain type of
cow. Any of Farmer John’s friends will only be happy if they can drink their
preferred type of milk during their visit.

Please determine whether each friend will be happy after visiting.

In this problem, you are given a tree with cows of different types at each node,
and list of queries to perform on the tree. Each query gives you the indices of
two nodes and asks you to determine if the shortest path between those two
nodes contains at least one cow of a certain type.

2.2 My Solution

We will solve the problem by processing the queries offline (in a different order
than they are presented which makes the problem easier to solve). Sort the
queries in order of increasing C; (the type of cow you need to find along the
path from A; to B;). This allows us to reduce the problem to finding the max-
imum C; along the path from A; to B;. To do this, we will need to do some
preprocessing on the graph. Before we process queries, store every value of C'
that occurs in the tree with all the locations at which it occurs. Then, as we
are going through the sorted queries and encounter new values of C', we can add
them to the graph. When we process every query, the values of C in the tree
are always less than the C; that we are currently processing. Because of this,
we can query the maximum value in the tree on the path from A; to B; and if
this value is equal to Cj, then the farmer will be happy.

Of course, now we need a way to efficiently query the maximum value in the
tree along the path from A; to B;. Fortunately there is a technique called heavy
light decomposition that allows us to use a segment tree to perform such queries
in log N time. This solution runs in O(M log N) time.



2.3 USACO’s Solution

In this solution, we will also use offline queries, but we will process them differ-
ently. We will solve the queries while doing a DFS on the graph. Before doing
the DFS, store a data structure which maps a node to the list of queries for
that node. Also, do a preorder traversal of the graph, which will allow us to
determine if a node is an ancestor of another node. Now we are ready to answer
the queries using a DFS.

While doing the DFS, maintain a stack of nodes on the path from node 1 to
the current node z, as well as a list that stores, for each type of cow seen along
the path from 1 to z, the nodes along the path that have a cow of that type
and the depth of that node. When we process a node, we will answer all queries
that have that node as one of their endpoints. We do this by checking if the last
farm y corresponding to the type of cow C; in the query is on the path from A;
to B;. If y is not an ancestor of B;, then the path from A; to B; contains y and
the query is true. Otherwise, for the query to be true, y must be the LCA of A;
and B;. We can do this by directly calculating the LCA, or by noticing that if
the node Y that is one deeper than y is an ancestor of both A; and B;, then y
is not the LCA. Otherwise, A; and B; are in different subtrees of y, so y is the
LCA, and the query is true. Once a node is processed, process its children in
the same and all the queries will be answered. This solution runs in O(N + M)
time.

3 Problem 3: Moortal Cowmbat

3.1 Problem Statement

There are M buttons labeled by the first M lowercase letters (1 < M < 26).
Bessie’s favorite combo of moves in the game is a length-N string S of button
presses (1 < N < 10°). However, due to the most recent update, every combo
must now be made from a series of ”streaks”, where a streak is defined as a series
of the same button pressed at least K times in a row (1 < K < N). Bessie
wants to modify her favorite combo to produce a new combo of the same length
N, but made from streaks of button presses to satisfy the change in rules.

It takes a;; days for Bessie to train herself to press button j instead of button
i at any specific location in her combo (i.e. it costs a;; to change a single specific
letter in S from i to j). Note that it might take less time to switch from using
button ¢ to an intermediate button k£ and then from button k to button j rather
than from ¢ to j directly (or more generally, there may be a path of changes
starting with ¢ and ending with j that gives the best overall cost for switching
from button ¢ ultimately to button j).

Help Bessie determine the smallest possible number of days she needs to
create a combo that supports the new requirements.



3.2 Solution

e Run Floyd Warshall on cost matrix
e Precompute necessary prefix sums

e Run Dynamic Programming Algorithm

3.3 Dynamic Programming

Let dp[i][j] represent the smallest amount of time needed so that the first ¢
letters create a “valid combo” and the last letter is j (so the last K letters are
all 7). Our DP states will require that we maintain range minimums in some
way. While segment trees are an option, one can realize that a second dpmin]i]
array will suffice. dpminli] represents the minimum value of all dp[i][j] across
all possible j.

dp(i][j] = min (psfi]il-psfi-K] i} +dpminfi-K],dpfi-1] i +cstfi]j));

The ps[i][j] matrix represents prefix sums, whereas the cst[i][j] matrix rep-
resents the input cost matrix after Floyd Warshall has been executed on it.

3.4 Time Complexity Analysis

Floyd Warshall will run in O(M?3) because we have M letters. Our DP states
require O(N x M) memory and runs in O(N * M) time.

Note that the test cases were structured in such a way that some version of
this solution that’s missing an optimization will still earn a fair number of test
cases.



