
December 2019 Plat Review

Ray Bai and Danny Mittal

January 2020

1 Greedy Pie Eaters

Problem Statement: 1 ≤ N ≤ 300, 1 ≤M ≤ N(N+1)
2

You are given M intervals, each of which is a triple of integers (l, r, w) satisfying 1 ≤ l ≤ r ≤ n and
1 ≤ w ≤ 109, indicating that the interval covers all of the integers from l to r inclusive. A set of intervals is
valid if the intervals in the set can be ordered such that no interval in the set is fully contained in the union
of the intervals before it in the order. Find the maximum possible total weight of a valid set.

Solution: Dynamic Programming
We will create a DP array indexed by l and r. dp[l][r] will be the maximum weight of any valid set all

of whose intervals lie between l and r. The transition comes from the idea that any valid set will have an
interval that comes last in its order, and this interval should not be fully contained in the union of all the
other intervals in the valid set, which means that it should contain at least one integer that is not contained
by the rest of the set.

Let this integer be k. To update dp[l][r], we will loop over all k such that l ≤ k ≤ r, and attempt to
create a new valid set from the optimal valid set between l and k−1, the optimal valid set between k+1 and
r, and an interval between l and r that contains k - this is important so that that interval isn’t fully covered
by the other two valid sets. We can get the optimal weightings of those two valid sets from dp[l][k − 1] and
dp[k + 1][r] (remember that we don’t need the optimal set, just the total weighting of the optimal). Getting
the weighting of the new interval that we’re adding will take a bit more work.

There are a couple ways to do this, but the simplest approach is another DP. Let dpMax[l][k][r] be the
maximum weighting of any interval lying between l and r that contains k - you’ll notice that this is exactly
what we need. For every interval (l, r, w), loop through all k such that l ≤ k ≤ r and set dpMax[l][k][r]
to max(dpMax[l][k][r], w). Then expand all of these placements outward using DP: more precisely, for all
l, k, r, set dp[l][k][r] to max(dp[l][k][r], dp[l + 1][k][r], dp[l][k][r−]), capturing the weighting of the optimal
interval inside. That concludes this DP.

Returning to the original DP, our transition is now clear: to update dp[l][r], loop through all k such that
l ≤ k ≤ r and set dp[l][r] to max(dp[l][r], dp[l][k − 1] + dpMax[l][k][r] + dp[k + 1][r]). We now only need
an additional transition to account for combining two valid sets that don’t intersect without adding a new
interval, which is similar: loop through all k such that l ≤ k < r and set dp[l][r] to max(dp[l][r], dp[l][k] +
dp[k + 1][r]). This will also account for expanding one valid set outward, as the other “valid set” will simply
contribute a weighting of 0. Now our DP is complete, and the answer is contained in dp[1][n].

The first DP has N2 values each of which is computed in an O(N) transition, giving a complexity of
O(N3), and the auxiliary DP has N3 values each of which is computed in an O(1) transition, giving a
complexity of O(N3), so that the overall complexity is O(N3), which is fast enough given that N ≤ 300.

2 Bessie’s Snow Cow

Problem Statement: 1 ≤ N,Q ≤ 100000
You are given a rooted tree with N vertices. A node in this tree can be splashed with a color c where c

is an integer satisfying 1 ≤ c ≤ 100000, which will also cause all nodes in that node’s subtree to be splashed
with c.

You are then given Q queries, which can take one of two types:

1



Type 1 queries consist of two integers x, c satisfying 1 ≤ x ≤ N and 1 ≤ c ≤ 100000, indicating that the
node x has been splashed with c.

Type 2 queries consist of a single integer x satisfying 1 ≤ x ≤ N , indicating that you should output the
sum over all nodes y in the subtree of y (including x itself) of the amount of distinct colors with which y
has been splashed.

Solution:
First, we flatten the tree. What this means is that we find the pre-order traversal of the tree (using DFS)

and assign each node x in the tree an interval (lx, rx) (1 ≤ lx ≤ rx ≤ N) indicating that lx is the index of x
in the pre-order traversal, and rx is the rightmost index in the pre-order traversal of a node in the subtree
of x. Because of how pre-order traversal works, the nodes between lx and rx in the pre-order traversal will
consist precisely of the subtree of x. This is useful, because to query the subtree of x, we can instead use a
linear data structure such as a segment tree and query the interval (lx, rx).

We now do exactly that: create a lazy propagation sum segment tree corresponding to the nodes in the
tree according to the pre-order traversal. The value at a single index will represent the amount of distinct
colors with which the corresponding node has been splashed. Therefore, to answer type 2 queries for the
node x, we simply query the lazy segment tree over the interval (lx, rx) and output the result.

All that’s left now is to handle type 1 queries. For each possible color c (a.k.a. all integers from 1 to
100000) create a sorted set of integers (in Java/Kotlin, use TreeSet; in C++, use std::set). This set will
contain lx for all nodes x such that x has been splashed with c and no ancestor of x has been splashed with
c.

Now, given a type 1 query x, c, we first want to determine if x has already been splashed, because in that
case we shouldn’t do anything. We can do this by querying c’s sorted set in the following manner: if x has
been splashed with c, then one of x’s ancestors (possibly x itself) must be in the set. Because of pre-order
traversal, any ancestor y of x would have to have ly be the greatest integer in the set less than or equal to
lx. Therefore, we can simply query the sorted set to see what the greatest integer ly less than or equal to lx
is, and then check if y is an ancestor of x (by checking if ly ≤ lx ≤ ry). If y is an ancestor of x, then we do
nothing and move on.

If not, then this query actually matters. We now have to update the segment tree, but before doing that,
we need to un-update the segment tree for any descendants of x that were previously splashed with c. We
can again do this by looking at c’s sorted set: the descendants y of x must have ly immediately follow lx in
the set. Therefore, we can simply continually query for the least integer ly greater than lx in the set, and
while y is a descendant of x, remove ly from the set and do a range update on the segment tree on the range
(ly, ry) with a change of −1. Finally, add lx to the set and do a range update on the segment tree on the
range (lx, rx) with a change of 1.

Every type 1 query incurs at most one check for an ancestor of x, at most one addition of x into a set and
update on the segment tree, and at most one removal from the set and un-update on the segment tree later
on. This amount of operations is O(1), and each operation is O(logN), so that each type 1 query incurs an
overall complexity of O(logN).

Every type 2 query incurs one query on the segment tree, which is O(logN).
All queries are O(logN), yielding a complexity of O(Q logN) to process all of the queries. The DFS to

determine (lx, rx) for all x is O(N), and the initialization of the segment tree is O(N), making the overall
complexity O(N + Q logN).

3 Tree Depth

Problem Statement: 1 ≤ N ≤ 300, 1 ≤ K ≤ N(N−1)
2

Consider an array p of length N , consisting of all of the integers from 1 to N in some order. Take as an
example p = {4, 7, 3, 5, 1, 2, 6}.

A pair of indices (j, k) is an inversion if 1 ≤ j < k ≤ n and p[j] > p[k]. Conceptually, an inversion is
when two elements in the array are in the wrong order. In the given example, (2, 4) is an inversion because
p[2] = 7 comes before p[4] = 5, but 7 > 5.

The Cartesian tree of p is a tree constructed in the following manner: Find the index j such that p[j]
is the minimum value in the array. Set this as the root of the tree. Then find the Cartesian tree of the

2



subarray of p coming before j, and set that as the left subtree of j in the tree. Similarly, find the Cartesian
tree of the subarray of p coming after j, and set that as the right subtree. The Cartesian tree of the given
example is as follows:

5

3 6

1 4 7

2

Note that the nodes in the tree are the indices, not the values themselves.
For an index j (so 1 ≤ j ≤ n), define dp(j) as the depth of j in the Cartesian tree of p. Define S as the

set of all p with exactly K inversions. For each j, find
∑

p∈S dp(j).
Solution: To solve this problem, we will need to make use of generating functions. A generating function

is essentially a polynomial in which a term of the form xa is seen as representing an object with a certain
value equal to a, so that a term of the form cxa is seen as represent c objects, all of which have that certain
value equal to a. In our case, the objects will be the arrays p and the certain value will be the amount of
inversions in the array. You can see where this is headed: we will create some kind of generating function
and then look at the xK term.

Consider constructing an array p. We’ll begin with the index j. We’re not going to actually say what
value we’re putting at index j, just that there is something there. Next, we’ll move on to the index j + 1.
Like before, we won’t actually say what value we’re putting at index j + 1, but what we will say is what that
values is relative to p[j]. p[j + 1] can either be greater than or less than p[j], and we’ll choose which one it
is. Notice something important: if we say that p[j + 1] > p[j], then (j, j + 1) is not an inversion, but if we
say that p[j + 1] < p[j], then (j, j + 1) is an inversion. Therefore, at this step, we can introduce either 0 or
1 inversions.

When we’re at index j + 2, we make a similar choice: p[j + 2] will either be greater than the previous
two values, in between them, or less than both, which will introduce either 0, 1, or 2 inversions. In the next
step, we can introduce between 0 and 3 inversions, and so on. Eventually we will reach the end of the array
and need start defining the values before j, starting with the index j − 1, but this doesn’t actually make
a difference: if we’ve defined an ordering of q values and are now “choosing” a value that comes before or
after all of those values, we can add between 0 and q inversions. To summarize: in the first step we add 0
inversions, in the second we add 0 to 1 inversions, in the third step we add 0 to 2 inversions . . . up until the
final step, where we add 0 to N − 1 inversions.

What we can now do is make a generating function out of this: we start with the term x0, representing an
array that has 0 inversions. The next step is represented by the multiplying factor (x0+x1), because for each
of our current possibilities for the array, we get a new possible array with 0 additional inversions and a new
possible array with 1 additional inversion. So if we were to stop it right there and have an array of length 2,
our generating function would be x0(x0 + x1) = x0 + x1, which makes sense - there are two possibilities for
the array, one of which, {1, 2}, has 0 inversions, and one of which, {2, 1}, has 1 inversion. To get the arrays
of length 3, we multiply this by (x0 + x1 + x2), which gives (x0 + x1)(x0 + x1 + x2) = x0 + 2x1 + 2x2 + x3,
which is correct: The 1 array with 0 inversions is {1, 2, 3}. The 2 arrays with 1 inversion are {1, 3, 2} and
{2, 1, 3}. The 2 arrays with 2 inversions are {2, 3, 1} and {3, 1, 2}. The 1 array with 3 inversions is {3, 2, 1}.

Of course, we want a length N array, so we continue up until the factor (x0 + x1 + x2 + · · ·+ xN−1), so
that our overall generating function becomes the following product:

x0(x0 + x1)(x0 + x1 + x2)(x0 + x1 + x2 + x3) · · · (x0 + x1 + x2 + · · ·+ xN−1)

This isn’t actually the final generating function that we’ll need, but we will need to compute this gen-
erating function as part of our algorithm, so let’s do that now. The highest power term that can be in

our generating function is x
N(N+1)

2 , so we’ll represent the generating function as a 0-indexed array of length
N(N+1)

2 + 1) named poly. We start with poly[0] = 1, and poly[j] = 0 for all j 6= 0. In the a-th step, we
multiply by the factor (x0 + x1 + x2 + · · · + xa−1). What this means is that the coefficient of the xj term
in our new generating function is the sum of the coefficients of the xj , xj−1, xj−2, . . . xj−(a−1) terms in our
old generating function. Therefore, we can use prefix sums of the coefficients of the old generating function
to efficiently calculate the new generating function. Specifically, in the a-th step, we first perform prefix

3



sums so that sum[j] is poly[0] + · · · + poly[j]. Then, we simply set poly[j] to sum[j] − sum[j − a]. Since
the generating function has O(N2) terms, both of these steps are O(N2), and since there are N factors to
multiply, the overall complexity of calculating this generating function is O(N3).

Now, how do we use this to calculate the sum of dp(j)? First consider again a single array p. dp(j),
the depth of j in the Cartesian tree of p, is equal to the amount of ancestors of j in the Cartesian tree.
Therefore, we can compute dp(j) by counting the amount of indices k such that k is an ancestor of j in the
Cartesian tree. However, k being an ancestor of j is equivalent to p[k] being the minimum value of all of
the values at the indices between j and k; i.e. if j < k, then p[k] = min(p[j], p[j + 1], . . . , p[k − 1], p[k]),
otherwise p[k] = min(p[k], p[k + 1], . . . , p[j − 1], p[j]).

Now that we have this condition that is equivalent to k being an ancestor of j, what we can now do
is, for each k, compute the amount of p ∈ S that have k as an ancestor of j by computing a generating
function of p that have k as an ancestor of j, extracting the coefficient of xK , and summing those results
to get dp(j). For simplicity, assume that k > j - the case of k < j is different only in an unimportant way.
When we were constructing the generating function above, since we started by “choosing” p[j], we chose p[k]
in the k − j + 1th step, meaning that we could add between 0 and k − j inversions. However, note that,
since we started from p[j], the elements that we had already chosen up to that step - a.k.a. the elements
with respect to which we would order p[k] - are precisely the elements that p[k] must be less than to be an
ancestor of j - the elements between indices j and k (excluding k itself, which is unimportant). This means
that the modification that we have to make to the generating function in order to enforce that k be an
ancestor of j is to always make p[k] less than the elements that had already been chosen, which is equivalent
to always adding k − j inversions at the k − j + 1th step. This means that instead of multiplying by the
factor (x0 + · · ·xk−j), we multiply by the factor xk−j .

Therefore, in order to get the generating function that we need, we just need to divide our original
generating function by (x0 + · · ·xk−j) and multiply it by xk−j , which can be done in O(N2) using a similar
prefix sums approach to before. This initially looks like a problem: we’re doing this for each j and for each
k, which would make this step overall O(N4); however, the generating function we calculate only depends
on k− j, which means that we only need to actually calculate N − 1 of these generating functions and then
reuse them, making this step only O(N3).

This is all identical in the case of k < j, except that we look at j − k instead of k − j (think about
choosing the values below index j before you choose the values above index j), and instead of dividing our
original generating function by (x0 + · · ·xk−j) and multiplying it by xk−j , we divide our original generating
function by (x0 + · · ·xk−j) and multiply it by x0 (because we must now add 0 inversions on the j − k + 1-th
step).

Finally, if we store the coefficient of xK in the generating function for d = k− j in res1[d], and store the

coefficient of xK in the generating function for d = j − k in res2[d], then we get answer[j] =
∑j−1

k=1 res2[j −
k] +

∑N
k=j+1 res1[k− j]. The most expensive steps we used were O(N3), so the overall complexity is O(N3),

which is fine for N ≤ 300.

4


