
Heavy Light Decomposition

Pranav Mathur

January 17th, 2020

1 The Problem

Suppose you have a rooted tree with weights at each node. Answer a series of
queries that either update the value at a node, or query the maximum value
along a path from a node to the root.

The naive solution to this problem is to simply walk up that path from a node
to the root and calculate the maximum value along the path. This solution has
runs in O(1) time for updates and O(n) time for queries, which is too slow for
multiple queries.

The problem of finding the maximum value along a path is a signal that segment
trees might be useful, but how do we make a segment tree from a tree? We will
do this using a technique called heavy light decomposition.

2 Heavy Light Decomposition

The idea of HLD is to label every edge in the tree as heavy or light. For each
vertex, label the edge leading to the largest subtree as heavy, and label all other
edges as light. This gives us the interesting property that if we consider any
subtree of size n, all of its ”light” subtrees have a size of at most n/2 (if they
didn’t they would be heavy subtrees).

1



Labeling edges in this way gives us some useful results. First, note that since
every vertex has exactly one heavy edge, we can decompose the tree into
disjoint paths consisting of heavy edges. Second, note that since each
light subtree has size n/2 and heavy paths are connected by light edges, any
path from a node to the root of the tree will pass through at most
logN heavy paths. If we maintain a segment tree for each heavy path that
allows us to find the maximum value of the nodes in that path), we no longer
have to traverse every node on the path to the root. Instead we can just travel
along the heavy paths from the node to the root. Since there are at most logN
heavy paths from the node to the root querying each path takes logN time,
total runtime for a query is log2 N !

3 A Trickier Problem

Now let’s consider a slightly trickier problem: find the maximum value along
the path from node a to node b in the tree. This problem is different, but can
still be solved using HLD. The process we will use is similar to what we do to
find the least common ancestor of two nodes. While nodes a and b are not in
the same heavy path, move the deeper of the two nodes up its heavy path and
do a segment tree query on that path. When they are on the same path, do a
segment tree query from a to b on that path. Then, return the max value found
on all segment tree queries.

4 Implementation

First, we will do a DFS to calculate each node’s depth, its parent, and the heavy
edge emanating from that node. This allows us to label heavy edges in the tree,
while also recording information we will need when performing queries (parent
and depth).

2



Algorithm 4.1 Label Heavy and Light Edges

for all vertices v do
parent[v]← −1
depth[v]← 0
heavy[v]← −1

function label(v)
size← 1
maxChildSize← 0
for all neighbors c of v do

if c 6= parent[v] then
parent[c]← v
depth[c]← depth[v] + 1
childSize← label(c)
size += childSize
if childSize > maxChildSize then

maxChildSize← childSize
heavy[v]← c

return size

Next, we will decompose the tree by recording the head of each heavy path
and building the segment tree. Note that instead of maintaining a segment tree
for each heavy path, we can maintain a single segment tree by processing every
node in a single heavy path consecutively. Thus, the segment tree consists of a
series of heavy paths.

Algorithm 4.2 Find the Decomposition

curPos← 0
function decompose(v, h)

head[v]← h
pos[v]← curPos + +
segTreeArr[curPos]← arr[v]
if heavy 6= −1 then

decompose(heavy[v], h)

for all neighbors c of v do
if c 6= parent[v] and c 6= heavy[v] then

decompose(c, c)

Finally, we will perform queries from node A to node B using an algorithm
similar to an LCA query.

3



Algorithm 4.3 Query from A to B

function query(a, b)
ans← 0
while head(a) 6= head(b) do

if depth[head[a]] ≤ depth[head[b]] then
heavyPathMax← segTreeQuery(pos[head[a]], pos[a])
ans← max(ans, heavyPathMax)
a← parent[head[a]]

else
heavyPathMax← segTreeQuery(pos[head[b]], pos[b])
ans← max(ans, heavyPathMax)
b← parent[head[b]]

if depth[a] ≤ depth[b] then
lastPathMax← segTreeQuery(pos[a], pos[b])

else
lastPathMax← segTreeQuery(pos[b], pos[a])

ans← max(ans, lastPathMax)
return ans

5 Applications and Problems

HLD is a very useful technique that doesn’t just apply to finding the maximum
value along the path between two nodes. Since the underlying data structure
is a segment tree, HLD can be used to perform any query on the path between
two nodes that segment trees can do for an array. The following problems all
use HLD or its motivating ideas.

USACO December 2011, Gold, Grass Planting

USACO February 2019, Gold, Cowland

USACO December 2019, Gold, Milk Visits

This dude put a bunch of problems at the bottom of his HLD article:
https://blog.anudeep2011.com/heavy-light-decomposition/

4


