
Monotonic Queues and Monotonic Optimization in Dynamic
Programming

Sarah Zhang

February 2020

1 Introduction

A monotonic queue, also known as a double-ended queue, refers to a data structure in which each
element monotonically increases or decreases with its subscript. The elements can be deleted at both
the beginning and end of the queue, but they can only be inserted at the end. Since the elements are
monotonic, the head element is either the maximum or minimum value depending on which monotonic
queue you are constructing (decreasing or increasing order). Due to the nature of the double-ended
queue, each element is enqueued once and dequeued at most once. Thus, the computational complexity
of maintaining a monotonic queue is O(n).

2 Example 1: Sliding Window Maximum/Minimum

2.1 Problem

Given an array A of size n, there is a sliding window of size k which is moving from the very left of the
array to the very right. You can only see the k numbers in the window. Each time, the sliding window
moves right by one position. Return the maximum and minimum sliding window, respectively.

Input: A = [1, 3, -1, -3, 5, 3, 6, 7], and k = 3
Output: [3, 3, 5, 5, 6, 7] and [-1, -3, -3, -3, 3, 3]

Window Position Maximum Sliding Window Minimum Sliding Window
[1 3 -1] -3 5 3 6 7 3 -1
1 [3 -1 -3] 5 3 6 7 3 -3
1 3 [-1 -3 5] 3 6 7 5 -3
1 3 -1 [-3 5 3] 6 7 5 -3
1 3 -1 -3 [5 3 6] 7 6 3
1 3 -1 -3 5 [3 6 7] 7 3

2.2 Basic Solution

The basic method is to repeatedly scan each window to find the maximum or minimum value. We
begin by looping through the array A of size n and then scanning the first k elements, the second k
elements, the third k elements, and so forth. The time complexity for this method can be written as
O(N ∗ k).

1



2.3 Segment Trees Solution

Other methods such as segment trees can find the maximum/minimum more efficiently than the basic
method, but it has a time complexity of O(NlogN) which is not linear.

2.4 Monotonic Queues Solution

To solve the sliding window maximum/minimum problem in linear time, we can utilize monotonic
queues. The steps for maintaining a maximum monotonic queue are shown below:

1. Determine if the head of the queue is within the sliding window range. If it no longer in the
window range, increase the head of the queue.

2. Every time when an element is added, it is compared with the end of the queue. If the new
element is greater than the tail of the queue, then reduce the tail because the tail element will
be removed. Continue to do this until the nature and constraints of the monotonic queue are
satisfied.

3. Now the monotonic queue is in decreasing order and the head will contain the maximum value
we are looking for.

Algorithm 1 Sliding Window Maximum with Monotonic Queues
A[n + 1]← input
Q[n + 1]← monotonic queue maintained by values
N [n + 1]← monotonic queue maintained by subscript
F [n + 1]← store the maximum value of each sliding window
function Monotonic Queue Max

head← 1
tail← 1
for i = 1 to n do

while <head is not within sliding window range> do
head← head + 1

while <current value ≥ value of Q[tail]> do
tail← tail − 1

tail← tail + 1
N [tail]← i
Q[tail]← A[i]
F [i]← Q[head]

2.5 Summary & Recap

Method Time Complexity Performance
1 Basic Method O(N ∗ k) Poor
2 Segment Trees Method O(NlogN) Moderate
3 Monotonic Queues Method O(N) Best

2



3 Example 2: Maximum Continuous Sum

3.1 Problem

Given an integer array A with size n, find a subsequence with the maximum value that can’t exceed
m in length.

Input: A = [1, -3, 5, 1, -2, 3], n = 6, and m = 4
Output: 7

3.2 Solution

First, construct an array S which satisfies the following:

S[i] =
n∑

i=1
A[i]

We know that S[0] = 0 and S[i] = S[i − 1] + A[i]. Let F [i] be the maximum continuous sum from 1
to n.

F [i] = max


S[i]− S[i− 1]
S[i]− S[i− 2]
...
S[i]− S[i−m]

Since S[i] is a static value, it does not change and we can transform this function into:

F [i] = S[i]−min


S[i− 1]
S[i− 2]
...
S[i−m]

The second part of this equation is simply a sliding window minimum problem and we can easily use
monotonic queues to obtain the final answer.

Algorithm 2 Maximum Continuous Sum
A[n + 1]← input
S[n + 1]← store the continuous sum of the elements in A
Q[n + 1]← monotonic queue maintained by values
N [n + 1]← monotonic queue maintained by subscript
answer ← -infinity
function Maximum Continuous Sum

head← 1
tail← 1
for i = 1 to n do

while <head is not within sliding window range> do
head← head + 1

answer ← max(answer, S[i]−Q[head])
while <current value < value of Q[tail]> do

tail← tail − 1
tail← tail + 1
N [tail]← i
Q[tail]← S[i]

3



4 Example 3: Mowing the Lawn (USACO Gold)

4.1 Problem

After winning the annual town competition for best lawn a year ago, Farmer John has grown lazy; he
has not mowed the lawn since then and thus his lawn has become unruly. However, the competition
is once again coming soon, and FJ would like to get his lawn into tiptop shape so that he can claim
the title. Unfortunately, FJ has realized that his lawn is so unkempt that he will need to get some of
his N (1 ≤ N ≤ 100, 000) cows, who are lined up in a row and conveniently numbered 1...N , to help
him. Some cows are more efficient than others at mowing the lawn; cow i has efficiency Ei (1 ≤Ei

≤ 100, 000, 000). FJ has noticed that cows near each other in line often know each other well; he has
also discovered that if he chooses more than K (1 ≤ K ≤ N) consecutive (adjacent) cows to help him,
they will ignore the lawn and start a party instead. Thus, FJ needs you to assist him: determine the
largest total cow efficiency FJ can obtain without choosing more than K consecutive cows.

Input:
N = 5, K = 2

1 2 3 4 5
Output: 12

4.2 Solution

Since each cow may or may not be chosen to mow the lawn, we use 0 to represent the cows that are
not chosen and 1 to represent the cows that are chosen. Let DP [i][0] represent a cow i that is not
chosen to mow the lawn and DP [i][1] represent a cow i that is chosen to mow the lawn. We know
that S[0] = 0 and S[i] = S[i− 1] + A[i]. Let DP [i][0] or DP [i][1] be the maximum total cow efficiency
for cow i.

DP [i][0] = max

{
DP [i− 1][0]
DP [i− 1][1]

DP [i][1] = max


S[i]− S[i− 1] + DP [i− 1][0]
S[i]− S[i− 2] + DP [i− 2][0]
...
S[i]− S[i−K] + DP [i−K][0]

Since S[i] is a static value, it does not change and we can transform this function into:

F [i] = S[i] + max


DP [i− 1][0]− S[i− 1]
DP [i− 2][0]− S[i− 2]
...
DP [i−K][0]− S[i−K]

The second part of this equation is simply a sliding window maximum problem and we can easily use
monotonic queues to obtain the final answer.

4



Algorithm 3 Mowing the Lawn
A[N + 1]← input
S[N + 1]← store the continuous sum of the elements in A
Q[N + 1]← monotonic queue maintained by values
DP [N + 1][N + 1]← store the maximum total cow efficiency
function Mowing The Lawn

head← 1
tail← 1
for i = 1 to N do

DP [i][0]← max(DP [i− 1][0], DP [i− 1][1])
while <head is not within sliding window range> do

head← head + 1
DP [i][1]← S[i]− S[Q[head]] + DP [Q[head]][0]
while DP [i][0]− S[i] > DP [Q[tail]][0]− S[Q[tail]] do

tail← tail − 1
tail← tail + 1
Q[tail]← i

answer = max(DP [N ][0], DP [N ][1])

5 Conclusion

The underlying pattern for a monotonic queue problem is shown below:

F [i] = A[i]±max/min


B[i− 1]± C[i− 1]
B[i− 2]± C[i− 2]
...
B[i− k]± C[i− k]

Since A[i] is a static value, it is irrelevant to the max/min block. Remember that when you see this
type of pattern, the problem can be easily solved and optimized with monotonic queues in O(n) time.

5


	Introduction
	Example 1: Sliding Window Maximum/Minimum
	Problem
	Basic Solution
	Segment Trees Solution
	Monotonic Queues Solution
	Summary & Recap

	Example 2: Maximum Continuous Sum
	Problem
	Solution

	Example 3: Mowing the Lawn (USACO Gold)
	Problem
	Solution

	Conclusion

