
January 2020 Plat Review

Ray Bai and Helena Liu

February 2020

1 Problem 1: Cave Painting

1.1 Problem Statement

Bessie has become an artist and is creating paintings of caves! Her current work in progress is a grid of
height N such that each row of the grid contains exactly M squares (1 ≤ N,M ≤ 1000). Each square is
either empty, filled with rock, or filled with water. Bessie has already painted the squares containing rock,
including the entire border of the painting. She now wants to fill some empty squares with water such that
if the painting were real, there would be no net motion of water. Define the height of a square in the i− th
row from the top to be N + 1− i. Bessie wants her painting to satisfy the following constraint:

Suppose that square a is filled with water. Then if there exists a path from a to square b using only
empty or water squares that are not higher than a such that every two adjacent squares on the path share
a side, then b is also filled with water.

Find the number of different paintings Bessie can make modulo 109 + 7. Bessie may fill any number of
empty squares with water, including none or all.

1.2 Solution

• Construct connected components bottom up

• For each row, use either DP or combinatorics to find answer

1.3 Union Find/Combinations

We will run the following procedure on every separate component, which can be found using simple flood
fill in O(NM) time. Let’s begin from the bottom row. On top of maintaining each component, we will also
store the depth of each component. The depth of a component is the index of the lowest cell contained in
the component minus the highest cell. After each phase of merging/creating new components, we must find
a way to contribute the number of possible paintings without over-counting. While it is possible to create an
explicit DP array, this is also possible with combo. We know that the length of each component is at most
M, so we can store the heights of each component in a list. Then, we iterate through this list of integers and
maintain the total number of different paintings minus the total number of paintings with no components’
depth filled completely with water. By subtracting these two values, we will obtain the contribution of
this state without double counting. Repeat for the remaining components, and simply multiply by each
components’ value. Be careful of modding/overflow issues!

1.4 Time Complexity Analysis

Note that we run this algorithm for every ”component” in this painting. If the input consisted of one
large component, the run-time for it would be O(NM ∗α(N), where α(N) describes the inverse Ackermann
function from union-find operations.

1



2 Problem 3: Falling Portals

2.1 Problem Statement

There are N (2 ≤ N ≤ 2∗105) worlds. Each world i (for 1 ≤ i ≤ N) starts at x coordinate i and y coordinate
Ai (1 ≤ Ai ≤ 109). All Ai values are distinct. There also is a cow on each world. At time 0, the worlds fall
in the negative y-direction, world i falling at a speed of i units per second. Whenever two worlds are at the
same y coordinate (possibly a fractional time), a cow on one world can choose to teleport instantaneously
to the other world. For each world i, the cow on world i wants to travel to world Qi (Qi 6= i).

Determine how long the journey will take for each cow, if they travel optimally. The output for each
query should be a fraction a/b where a and b are positive and relatively prime integers, or -1 if the journey
is impossible.

2.2 Solution

• Consider each world to be a line

• Run Convex hull algorithm

• Binary search to find intersections

Consider each world to be a line with slope -i and y-intersection Ai. Call a point (T, Y) on this graph
”attainable” if it is possible for the cow on world i to be at y-coordinate Y at time T.

Suppose that A[Qi] < Ai. By the definition of convex hull, there must be no attainable points below the
lower convex hull of all lines representing worlds j such that Aj ≥ Ai. In addition, all points on this hull must
be attainable. Therefore, the task is to find the t-coordinate of the intersection of the line y = −Qi∗t+A[Qi],
which represents the path of the destination world, with this lower hull.

We can compute the hulls for all worlds by sorting the lines by decreasing order of Ai and adding them
to the convex hull one by one. After computing the hull for world i, we can binary search through the lines
making up the convex hull to find the intersection of the line y = −Qi ∗ t+ A[Qi] with the hull. The same
logic applies in reverse for queries in which A[Qi] > Ai. Greatest common denominator can be used to
simplify the answer into the desired fraction.

2.3 Time Complexity

Computing a convex hull takes O(N logN) time and binary searching on each convex hull will take O(logN)
time per search. Therefore, the solution will run in O(N(logN)2) time.

Note that USACO gives a certain number of lower-bound test cases, so an O(N3) brute force or optimized
O(N2) brute force can also be used to receive partial credit on this problem.

2


