Bitmask DP

Helena Liu

6 March 2020

1 Traveling Salesman Problem

1.1 Problem

There are N cities (2 < N < 20). Given the distance between each pair of cities, find the shortest possible
path that visits every city and returns to the origin city.

1.2 Brute Force Solution

Try every possible route that goes through every city. The complexity of this naive algorithm is O(N!),
which is too inefficient for the bounds of 2 < N < 20, as 15! is already over 1 billion.

How can we make a faster algorithm? Assume we are comparing two different ways to go from City A
to City B, both of which visit the same intermediate cities but in a different order. Logically, whichever one
of these two paths is shorter will always be better than the other, and will always be the preferred path to
take. Therefore, there is no reason to continue adding cities onto the longer path. Unlike the naive solution,
the dynamic programming solution for this problem takes advantage of this.

1.3 Bitmask DP Solution

A bitmask is an N-length binary string that represents a possible state. In the case of the Traveling Salesman
problem, the bitmask represents every city that we’ve visited so far. For example, if N = 5 and the bitmask
is 10110, the cities we've visited are cities 1, 3, and 4.

Let’s make a dp array of size 2V, since the decimal value of the largest possible bitmask is 2% — 1. We
also need another dimension of length NV, because we need to record which city we are currently at. In the
N = 5 example, if the bitmask is 10110, which is 22 in decimal, dp[22][4] will contain the shortest length
possible of all paths that visit cities 1, 3, and 4, and end at city 4. We can iterate from 0 to 2V — 1 without
missing any possible cases. This is because we need all subsets of a bitmask to be processed beforehand, and
all subsets are guaranteed to be a smaller number, since they are less by some power of 2.

Algorithm 1 Traveling Salesman Bitmask DP

fori<« 0...2Y —1do
for j < 0...N do
bitmask < i
for K< 0...N do
if (bitmask&1) == 0 then
dpli + 2F][N — k — 1] < min(dp[i + 2¥][N — k — 1], dpl[i][j] + dist[§][N — k — 1])
bitmask < (bitmask >> 1)

2 Time Complexity

For the Traveling Salesman Problem, the time complexity is O(N? * 2V), because we iterate 2%V times, and
with each iteration we try all N cities as our current city, and for each city we iterate through the N-length



bitmask to find the zeroes, which represent the cities that have not yet been visited. Bitmask DP always
contains an O(2%) factor because each bit in the N-length string can be a 0 or a 1, and it always contains
an O(N) factor because the entire length of the bitmask must be processed to find the indexes of the zeros.
Therefore, a general indicator to use Bitmask DP to solve a problem is when the bounds on N are very low,
such as N < 20.

3

Problems

. (USACO Gold December 2014, Guard Mark) Farmer John and his herd are playing frisbee. Bessie

throws the frisbee down the field, but it’s going straight to Mark the field hand on the other team!
Mark has height H (1 < H < 1,000, 000,000), but there are N cows on Bessie’s team gathered around
Mark (2 < N < 20). They can only catch the frisbee if they can stack up to be at least as high
as Mark. Each of the N cows has a height, weight, and strength. A cow’s strength indicates the
maximum amount of total weight of the cows that can be stacked above her. Given these constraints,
Bessie wants to know if it is possible for her team to build a tall enough stack to catch the frisbee, and
if so, what is the maximum safety factor of such a stack. The safety factor of a stack is the amount of
weight that can be added to the top of the stack without exceeding any cow’s strength.

. (USACO Gold January 2015, Moovie Mooving) Bessie is out at the movies. Being mischievous as

always, she has decided to hide from Farmer John for L (1 < L < 100, 000, 000) minutes, during which
time she wants to watch movies continuously. She has N (1 < N < 20) movies to choose from, each of
which has a certain duration and a set of showtimes during the day. Bessie may enter and exit a movie
at any time during one if its showtimes, but she does not want to ever visit the same movie twice, and
she cannot switch to another showtime of the same movie that overlaps the current showtime. Help
Bessie by determining if it is possible for her to achieve her goal of watching movies continuously from
time 0 through time L. If it is, determine the minimum number of movies she needs to see to achieve
this goal (Bessie gets confused with plot lines if she watches too many movies).

. (USACO Gold November 2013, No Change) Farmer John is at the market to purchase supplies for his

farm. He has in his pocket K coins (1 < K < 16), each with value in the range 1..100,000,000. FJ
would like to make a sequence of N purchases (1 < N < 100,000), where the ith purchase costs c(i)
units of money (1 < ¢(i) < 10,000). As he makes this sequence of purchases, he can periodically stop
and pay, with a single coin, for all the purchases made since his last payment (of course, the single
coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market
are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he
owes, he sadly receives no changes in return! Please compute the maximum amount of money FJ can
end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all
of his purchases.



