
Flow

Udbhav Muthakana
Edited by: Stephen Huan

April 24, 2020

1 Definition

Let G be a directed graph (no self-loops) with nonnegative edge weights, henceforth
known as “capacities”. Out of the set of vertices V , we define one vertex to be our
source, s, and another to be our sink, t. The flow function f(u, v) through G and the
capacity function c(u, v) satisfy the following requirements:

1. f(u, v) ≤ c(u, v) for all u, v ∈ V

2.
∑

v∈V f(v, u) =
∑

v∈V f(u, v) for all u, v ∈ V − {s, t}

Condition 1 means the flow through an edge cannot exceed the capacity of that edge.
Condition 2 is a little harder to understand, but means the flow into a vertex must

equal the flow out of a vertex (excluding, of course, the source and the sink).

Figure 1: A flow network - edges are labeled with f/c

The maximum flow problem is then defined as finding the maximum possible flow
f through G.

1

1.1 Useful Transformations

Our definition of a flow network is rather restrictive, but luckily there are several ways to
transform networks into proper flow networks without changing their maximum flows.

First, edges connecting a vertex to itself can safely be ignored, as they do not add
any flow to the network

Second, we often see networks with multiple sources and sinks. To remedy this, we
create a “supersource” and a “supersink” that connect to every source and every sink
respectively. The capacities for their connections are set to infinity.

Figure 2: Transformation of a network with multiple sources and sinks

Third, we are occasionally given networks with vertex capacities as well as edge
capacities. The relevant transformation involves splitting each vertex v with capacity
c into v1 and v2, which are connected by an edge of capacity c. We then connect v’s
incoming edge to v1 and the outcoming edge to v2.

Finally, if networks with antiparallel edges (that is, edges (u, v) and (v, u)) bother
you, they are easily transformed. For each pair of antiparallel edges, we arbitrarily
choose one edge and split it into two edges of equal capacity, inserting a new vertex (v′)
between them. The algorithms we discuss do not require the input network to have no
antiparallel edges - this transformation is purely for human comfort.

Figure 3: Transformation of a network with antiparallel edges

2

1.2 Residual Networks

The residual network Gf is a flow network that represents the changes we can make
to G. To construct Gf , we iterate over the edges of G and obey the following rules:

1. If f(u, v) < c(u, v), we add a new edge (uf , vf) with capacity c(u, v)− f(u, v)

2. If f(u, v) > 0, we add a new edge (vf , uf) with capacity f(u, v)

For example, consider the following flow network (a) and its residual network (b)

Figure 4: A graph and its residual network with the augmenting path highlighted

The edge (s, v1) in the original graph has f = 11 and c = 16, so we can increase its
flow by 16 − 11 = 5. Thus, in the residual graph, cf (s, v1) = 5. We can also decrease
the flow by f(s, v1), so we create an antiparallel edge: cf (v1, s) = 11.

The augmenting path is a simple (no cycles) path between s and t on the residual
graph. Since each cf (u, v) on the residual graph represents the amount we can increase
the flow on (u, v), we can increase the flow of every edge along the augmenting path by
the minimum cf along the path.

More formally, the residual capacity of an augmenting path p is

rc = min
(u,v)∈p

cf (u, v)

The presence of an augmenting path means we can improve the flow of the network
by at least the residual capacity.

1.3 Cuts

A cut of a flow network is a split of V into two vertex sets, S and T such that S contains
the source and T contains the sink.

The capacity of a cut is defined as the sum of the capacities of the edges that connect
S to T . Note that we do not include edges in the reverse direction. More formally, the
cut capacity is ∑

u∈S

∑
v∈T

c(u, v)

3

The max-flow min-cut theorem states that

1. The maximum flow of G is equal to the capacity of the minimum cut of G

2. When the flow is maximum, there is no augmenting path in Gf

2 Algorithms

2.1 Ford-Fulkerson

Ford-Fulkerson is a popular tool for max-flow problems. It is more of a method than
an algorithm, providing a framework that many algorithms with different complexities
draw from.

The method continually finds the residual network Gf and looks for an augmenting
path. If found, it increases the flow along every edge of the path by the residual capacity.
The logic stems from the second implication of the max-flow min-cut theorem: once
an augmenting path no longer exists, flow is maximized. Since each iteration of the
augmenting path provides us with a flow gain of at least 1 (assuming integral flow
values), the method is guaranteed to converge to the maximum flow.

procedure Ford-Fulkerson(G, s, t)
for each edge (u, v) in G.E do

set flow through (u, v) to 0

while augmenting path p in Gf exists do
rc = min(cf (u, v) for u, v in p)
for each edge (u, v) in G.E do

f(u, v) = f(u, v) + rc
f(v, u) = f(v, u)− rc

Note that the method does not specify how we find an augmenting path. Our choice
here is important to ensure our algorithm runs reasonably fast.

2.2 Edmonds-Karp

Edmonds-Karp is an implementation of Ford-Fulkerson that uses a BFS to find the
augmenting path. BFS will provide an augmenting path with the shortest length, but
why does this guarantee convergence to the maximal flow?

For every augmenting path in a residual network, one critical edge has the lowest
capacity and thus determines the path’s residual capacity. Once we augment flow along
the path, the critical edge is filled and will not appear in future residual graphs. However,
it may appear again as a “reduction” edge (i.e to represent decreasing flow through
that edge). This will happen at most V/2 times per critical edge, so the number of
augmentations is bounded by O(V E).

Since each augmentation takes O(E) in Ford-Fulkerson, our final complexity for
Edmonds-Karp is O(V E2). This is sufficient for most flow problems and is simple to

4

https://gist.github.com/stephen-huan/d660e04476f06695663401d0ac01a27a#flow

code (sample implementation linked above), but neither asymptotically nor practically
optimal. A common technique that yields asymptotically and practically faster times is
called “push-relabel”.

3 Push-relabel

Push-relabel, like Ford-Fulkerson, is method that many algorithms draw from. During
the operation of push-relabel algorithms, flow conservation is not strictly maintained.
Instead, we maintain a preflow that allows vertices to have more flow in than flow out.
The delta between flow in and flow out (which must be ≥ 0) is called excess flow .

There are two main operations suggested by the name: push ing preflow and rela-
bel ing a vertex. Before we discuss those, however, we must define one more concept: the
height of a vertex. Each vertex has a height that will change with relabel operations.
Since the sink has a height of 0, the operation of the push-relabel algorithm resembles
pushing flow down a hill.

Before commencing any push or relabel operations, we first set the preflow from the
source:

procedure Set-Preflow(G, s)
for each vertex v in G.V do

v.h = 0
v.e = 0

for each edge (u, v) in G.E do
(u, v).f = 0

s.h = |G.V |
for each vertex v adjacent to s do

(s, v).f = c(s, v)
v.e = c(s, v)
s.e− = c(s, v)

The first and second for loops initialize flows, excesses, and heights to 0. The three
statements in the last for loop push the maximum amount of flow from the source, set
the excess flow of the vertices proximate to the source, and set the excess of the source
to be negative.

The push operation on an overflowing vertex (excess flow > 0) u pushes as much
excess flow as possible to a neighbor v. The push operation is called if and only if
u.h− v.h = 1. That is, flow is only pushed downhill and between vertices with a height
differential of 1.

The relabel operation is called when a vertex u with excess flow > 0 has no neighbors
with the proper height. We increase the height of u to 1 + v.h, where v is the neighbor
of minimum height.

The actual push-relabel algorithm is rather simple:

5

procedure Push-Relabel(G, s)
Set-Preflow(G, s)
while node u with overflow exists do

if can push then
Push(G, u)

else
Relabel(G, u)

The variations among push-relabel algorithms mostly come from unique ways of
choosing which node to process next. The generic push-relabel algorithm has complexity
O(V 2E), an improvement over Edmonds-Karp.

4 Bipartite Matching

4.1 Bipartite graphs

Bipartite matching problems are the most common use of flow algorithms in competitive
programming settings. A bipartite graph is a graph whose vertices are split into two
disjoint sets, such that every edge bridges the sets. The sets are usually visualized
vertically, as shown in Figure 5. The maximum bipartite matching is the subset of
edges of maximum size such that no two edges share an endpoint.

Figure 5: A bipartite graph and its flow network with the maximum matching highlighted

The maximum bipartite matching problem can be solved with the previously dis-
cussed flow algorithms as follows: perform the transformation discussed in section 1.1,
creating a supersource and supersink (shown in Figure 5). Then, treating the edges
between L and R as directed toward R, we assign every edge a capacity of 1 and run our
flow algorithm. The maximum flow is equivalent to the size of the maximum bipartite
matching.

6

4.2 Hopcroft-Karp

The Hopcroft-Karp algorithm is a faster way to solve the maximum bipartite matching
problem. While Edmonds-Karp runs in O(V E2), Hopcroft-Karp runs in O(E

√
V). As

this speedup is rarely necessary in competitive programming, the implementation is
outside the scope of this lecture. However, many resources exist online should you wish
to implement it yourself.

7

5 Sample Problems

1. SPOJ Total Flow: Given a network of N (1 ≤ N ≤ 700) water pipes that connect
a well to the barn, Farmer John wishes to calculate the net flow capacity through
the pipes.

Solution: A straightforward Edmonds-Karp implementation passes. Note that to
construct a proper flow graph, you need to combine the capacities of multiple pipes
between the same vertices.

2. USACO Drainage Ditches (Training section 4.2) POJ link: Same as above with
(0 ≤ N ≤ 200)

Solution: Another Edmonds-Karp problem.

3. SPOJ Potholers: Several speleologists organize a training session in a mountain
with N (0 ≤ N ≤ 200) chambers that are semi-connected by corridors. During
the training, each speleologist explores a route from the top chamber, T , to the
bottom chamber, B. The speleologists may only move down, i.e. the level of
every consecutive chamber on a route must be lower then the previous one. Each
speleologist has to start from T through a different corridor, and each of them
must enter B using different corridor. The remaining corridors may be traversed
by more than one speleologist. How many speleologists can train simultaneously?

Solution: We are given the graph, but need to determine corridor capacities. To
satisfy the “one-per-corridor” condition, the capacity of any corridor that links to
either T or B must be one. The intermediate corridors should have infinite (or
arbitrarily large) capacities, and then we can just run Edmonds-Karp.

Sidenote: the input format for this problem is rather convoluted, so you should
check that first if you’re getting wrong answers.

4. USACO Cow Steeplechase (November 2011): Given a list of horizontal and vertical
line segments, find the maximum number of segments such that no two intersect.
No segments overlap each other.

Solution: We can represent the problem as a bipartite graph with horizontal lines as
vertices in one set and vertical lines in the other. An edge represents an intersection
between two lines. We can simply structure the graph as a flow problem and run
any maximum flow algorithm. However, we aren’t done, as we’ve only found the
minimum cut (in this case, the minimum node cover). It can be proven that the
complement of the minimum node cover is the maximum independent set in any
graph. Thus, the answer is the total number of nodes minus the maximum flow
value we computed.

5. USACO Asteroids (November 2005): A rectangular grid has some marked cells
(asteroids). Zapping a row destroys all asteroids in the row. Zapping a column
destroys all the asteroids in the column. Find the minimum number of zaps to
destroy the asteroids.

8

https://www.spoj.com/problems/MTOTALF/
http://poj.org/problem?id=1273
https://www.spoj.com/problems/POTHOLE/
http://www.usaco.org/index.php?page=viewproblem2&cpid=93
http://poj.org/problem?id=3041

Solution: Similarly to Cow Steeplechase, we represent the problem as a bipartite
graph with rows as vertices in one set and columns in the other. A row is connected
to a column if there exists an asteroid in the intersection of that row and column.
All edges have a weight of 1. The minimum cut of the network is guaranteed to
remove all asteroids, as there are then no paths from source to sink. The rules don’t
allow us to remove individual asteroids, but we can always achieve the same effect
with the removal of some edge from the supersource to a row or from a column to
the supersink. Thus, the answer is simply the minimum cut, or maximum flow, of
the network.

6 Past Lectures

1. (Broken) “Maximum Flow” (Samuel Hsiang, 2015)

2. “Introduction to Network Flow” (Alex Chen, 2012)

3. “Network Flow” (Andre Kessler, 2009)

4. “Network Flow” (Tom Morgan, 2006)

5. “Network Flow” (No author, 2004)

7 Works Cited

1. Introduction to Algorithms (also known as CLRS)

9

https://activities.tjhsst.edu/sct/lectures/1516/SCT_Maximum_Flow.pdf
https://activities.tjhsst.edu/sct/lectures/1112/networkflow.pdf
https://activities.tjhsst.edu/sct/lectures/0910/network_flow.pdf
https://activities.tjhsst.edu/sct/lectures/0607/netflownew.pdf
https://activities.tjhsst.edu/sct/lectures/0304/netflow.pdf
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

	Definition
	Useful Transformations
	Residual Networks
	Cuts

	Algorithms
	Ford-Fulkerson
	Edmonds-Karp

	Push-relabel
	Bipartite Matching
	Bipartite graphs
	Hopcroft-Karp

	Sample Problems
	Past Lectures
	Works Cited

