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1 Definition

The Range Minimum Query (RMQ) problem is defined as follows:
Given an array A with length n and two indexes i, j | i ≤ j, find the smallest element
between i and j (inclusive on both ends).

First, we should return the index k of the smallest element. Note that given k we
can access the value with A[k], but the reverse is not true - in an array with identical
values, it’s impossible to determine which index the value came from.

The notation I will use for running time is 〈f, g〉, where f is the preprocessing time
and g is the query time. For example, the näıve algorithm of scanning every element
between i and j is 〈O(1), O(n)〉, as it has no preprocessing time but could scan the entire
array for every query in the worst case.

2 Algorithms

2.1 Fenwick Trees and Segment Trees

Two classic data structures for this problem are Fenwick trees (more commonly known
as Binary Indexed Trees, or “BITs”) and segment trees. BITs can solve RMQ in
〈O(n log n), O(log n)〉, while segment trees can do it in 〈O(n), O(log n)〉. Both also sup-
port a wide variety of functions (sum, XOR, etc.) and allow dynamic updates of single
values and ranges. If you are interested in the aforementioned data structures for com-
petitive programming, read the SCT lectures linked in the appendix. Although this
lecture’s algorithm is more limited in its functions and cannot update, it has asymptot-
ically optimal construction and query times - 〈O(n), O(1)〉!

2.2 Dynamic Programming

There are only Θ(n2) possible queries because i can take on n possible values and j ≥ i
(there are exactly n+ (n− 1) + (n− 2) + . . .+ 1 = n(n+1)

2 queries).
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If we precompute every possible query, then we can answer them in O(1). Näıvely
computing the table with an O(n) scan for each query will take O(n3) for all the queries.
Instead, we can use dynamic programming. Consider the base case of i = j; the minimum
is the only element in the range. Now consider a range of length l starting at i, given the
minima for all ranges of length l − 1. The answer would just be the minimum between
the range starting at i with a length of l − 1, and the range starting at i + 1 with the
same length. Although there is significant overlap between the two ranges, this is fine
because the minimum of two intersecting ranges is the minimum of the union of the
regions. Note that this is not true for addition - it would overcount the intersection.

Figure 1: Decomposing a range into smaller ranges and the DP table.

Since there are O(n2) states and transitions between states are calculated in O(1),
this is an O(n2) DP, yielding an 〈O(n2), O(1)〉 RMQ structure. We now have two
solutions: 〈O(1), O(n)〉 with no preprocessing and 〈O(n2), O(1)〉 with full preprocessing.
Can we get something in between?

2.3 Sparse Tables

Instead of precomputing all O(n2) possible ranges, it suffices to only compute a certain
subset of ranges and still maintain constant time query. The key observation is that any
range can be broken down into subranges with lengths that are powers of two.

Figure 2: Breaking up a range into powers of two

For each starting index i, precompute the minimum in the ranges with lengths
1, 2, 4, . . . 2l, where l is at most log n. In order to answer a query, find the largest k
such that 2k ≤ j− i+1. This is equivalent to finding the most significant bit of j− i+1,
which can be done in constant time (if you are interested, a lecture is given here). The
simplest method is to compute blog2 (j − i+ 1)c, but that can be slow.
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Then, think of the range [i, j] as the union between the ranges [i, i+ 2k] and [j − 2k, j].
Each range has already been precomputed, so the query is O(1).

In order to precompute the O(n log n) ranges, we use dynamic programming again.
The logic is identical to the 2n jump pointers for the lowest common ancestor problem.
The base case of i = j is again to choose the only element in the range. Consider a
range of length l starting at i, given the minima for all ranges of length l

2 . The answer

would just be the range starting at i with length l
2 and the range starting at i+ l

2 with
the same length (the intuition is that 2x is, by definition, 2 · 2x−1 so we can compute the
answer to x by combining two answers of x− 1).

Overall, sparse tables yield an 〈O(n log n), O(1)〉 solution to RMQ. Can we get
something else in between full preprocessing and no preprocessing?

2.4 Block Decomposition

Consider splitting the array into n
b blocks, where each block has a size of b. Compute

the minimum value in each block.

Figure 3: Array with block size b = 3

Suppose i and j are in different blocks with blocks in between them (the cases where
i and j are in the same block, or they are in different but adjacent blocks are trivial).
To answer a RMQ query, scan from i’s position to the end of its block, j’s position to
the beginning of its block, and instead of scanning each element in between i and j, use
the precomputed block minima.

The preprocessing time is O(b) to find the minimum in each block, times n
b blocks

for O(n). The query time is

• O(1) to find the position of i and j in their blocks (divide by b)

• O(b) to scan i and j’s blocks

• O(nb ) to scan block minima between i and j.

The total query cost is O(b+ n
b ). How do we pick b to minimize this cost? Calculus.

d

db
(b+ nb−1) = 1− nb−2 = 0

1 = nb−2

b2 = n

b =
√
n

We now have an 〈O(n), O(
√
n)〉 solution to RMQ. This technique is actually called

“Square root bucketing” and has been covered in past SCT lectures.
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2.5 Hybrids

Instead of näıvely scanning inside blocks and over the block minima, we can build another
RMQ structure on top! The algorithm is then as follows:

• Split the input array into blocks of size b.

• Form a smaller array of block minima.

• Create a “summary” RMQ structure over the block minima array.

• Create “block” RMQ structures for each block.

• Merge the results together for queries.

Figure 4: Top level view of the overall RMQ structure

In order to analyze the running time of this new hybrid structure, let 〈f(n), g(n)〉 be
the time for the block minima and 〈p(n), q(n)〉 be the time for each block.

The preprocessing time is then:

• O(n) to compute the minimum for each block

• O(f(nb )) to construct the RMQ structure on the block minima

• O(nb p(b)) to construct the RMQ structure for each block

resulting in a construction time of O(n+ f(nb ) + n
b p(b)).

The query time is then:

• O(g(nb )) to query the block minima

• O(q(b)) to query a block

resulting in a query time of O(g(nb ) + q(b)).
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2.5.1 Hybrid Example

Suppose we use the 〈O(n log n), O(1)〉 sparse table structure for both the top and bottom.
The preprocessing time is:

O(n+ f(
n

b
) +

n

b
p(b))

= O(n+
n

b
log

n

b
+
n

b
b log b) = O(n+

n

b
log n+ n log b)

Suppose we pick b = log n.

= O(n+
n

log n
log n+ n log logn)

= O(n log log n)

The query time is O(g(nb ) + q(b)), which must be O(1) since both sparse tables have
a query of O(1).

Wait a second. If we used hybridization to get an 〈O(n log log n), O(1)〉 structure
from an 〈O(n log n), O(1)〉 structure, why can’t we do it again?

O(n+ f(
n

b
) +

n

b
p(b)) = O(n+

n

b
log log n+ n log log b)

Now pick b = log log n
= O(n+ n+ n log log log log n)

Before we recur yet again, realize that there’s a limit to this recursion. You can’t
have a block size of less than 1, so we can’t add an unlimited number of logarithms.

Let log(i) x denote appying the log function iteratively, e.g. log(3) x = log log log x.
We define log∗ x = min{i ≥ 0 | log(i) x ≤ 1}, i.e. the largest i such that after repeatedly
applying log that many times the result is ≥ 1. Some examples:

log∗ 2 = 1

log∗ 4 = 2

log∗ 16 = 3

log∗ 65536 = 4

log∗ 265536 = 5

Since 265536 is a gigantic number, log∗ x is probably never greater than 5. Thus, we now
have a beautifully recursive 〈O(n log∗ n), O(1)〉 structure which is for all practical pur-
poses 〈O(n), O(1)〉. This follows the same reasoning as the inverse Ackermann function
- technically union-find is O(α(m)), but we usually treat it as a constant.

However, union-find is asymptotically optimal i.e there does not exist a constant
time union-find structure. Does there exist an actual 〈O(n), O(1)〉 structure?
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2.6 Fischer-Heun

2.6.1 Block Types

Suppose we have the arrays B1 = [1, 3, 2, 4] and B2 = [10, 30, 20, 40]. Although the arrays
are different, the answer to any RMQ query is going to be the same, since they have a
similar type (which we’ll represent as B1 ∼ B2). If we find that two blocks have the same
type, we can reuse the RMQ structure of one for the other without computing it again.
We’ll also use the aforementioned sparse table for the top and the fully precomputed
solution for the blocks. The precomputation time is then

O(n+
n

b
log n+ (# of distinct blocks)b2)

We now have two questions:

1. How do we tell if B1 ∼ B2?

2. How many different types are there?

2.6.2 Detecting Block Types

Intuitively, we might use the “permutation type”, or element ordering. If we sort the
array and assign an id of 0 to the smallest element, 1 to the next, etc. then the resulting
order of ids is the permutation type. Going back to the previous example, B1 would
have a permutation type of 0, 2, 1, 3, as would B2. If B1 has the same permutation type
as B2, then B1 ∼ B2. However, the converse is not true. Consider B1 = [4, 5, 1, 3, 2] and
B2 = [3, 4, 1, 5, 2]. The permutation type of B1 is 3, 4, 0, 2, 1 while the permutation
type of B2 is 2, 3, 0, 4, 1 which are different.

However, B1 ∼ B2 (this is not obvious, but brute force every possible range). The
fact that permutation type doesn’t cover all the possibilities of two blocks being similar
is fine from a correctness standpoint. However, the number of possible permutations is
b!, so b will have to be very small for the number of distinct blocks to be reasonable.
Intuitively, this is because permutation doesn’t cover enough “cases” - the more cases
an approach covers, the less work the algorithm will have to do.

We now have a incorrect but fast solution. Observe that B1 and B2 will obviously
have the same answers for ranges of length 1. Because the pairwise relations are the
same (in B1 4 < 5, 5 > 1, 1 < 3, etc. while in B2 3 < 4, 4 > 1, 1 < 5), they will have
the same answers for ranges of length 2. By the same inductive argument the dynamic
programming relied on earlier, they must have the same answers for every range. To
see why this is not true, consider three numbers, a, b, c. If the pairwise relations are the
same, then we know the relationship between a, b and b, c. Can we find the minimum
element from this?
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a, b b, c a, c minimum

< < < a
> < ? b
< > ? ?
> > > c

Table 1: Binary relations table

Note that in the case of a > b and b < c, it’s unknown whether a > c, but it’s
irrelevant because b must be the minimum. However, in the case of a < b and b > c,
it’s actually impossible to determine the minimum. Take the example of B1 = [5, 10, 1]
and B2 = [5, 10, 7]. In both cases, the pairwise relations are the same. However, B1��∼B2

because the minimum element is at index 2 for B1 and at index 0 for B2. Although
the number of possible pairwise relations is 2b, which is reasonable for b = log n, this
approach will not yield correct answers.

We’ve seen how permutations have too many possibilities but are correct, while
binary relations have few possibilities and are incorrect. Is there something in between?

The next approach stems from the observation that if B1 ∼ B2, they must have
minimum elements at the same position. If they didn’t, a range query over the length
of the array would yield different answers. This property must also hold recusively on
the subarrays to the left and to the right of the minimum. These observations lead us
to Cartesian trees.

Figure 5: Cartesian trees

A Cartesian tree is defined as a binary tree which has a root that stores the
minimum value and whose left and right children are Cartesian trees built from the
subarrays to the left and right of the minimum. An alternative definition is a binary
tree where an inorder traversal yields the original array and is a min-heap.

We now have the following theorem: B1 ∼ B2 iff B1 and B2 have isomorphic,
i.e. same shape Cartesian trees. Let’s prove the forward direction (B1 ∼ B2 =⇒
isomorphic Cartesian trees): since B1 and B2 have minima in the same positions as all
RMQ queries are the same, their Cartesian trees must have the same shape. To prove
the reverse direction (isomorphic Cartesian trees =⇒ B1 ∼ B2), notice that RMQ
queries can be answered with an inorder traversal of a Cartesian tree. Starting at the
root, maintain a smallest element, start updating that element when you first see the
left index i, and stop updating when you see the right index j. A node is smaller if it is
higher up in the tree, i.e. it has a lower height.
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Since we proved an “if and only if”, the two conditions are identical and thus there does
not exist a “tighter” condition.

In order to check whether two arrays have isomorphic Cartesian trees, we need to be
able to build a Cartesian tree quickly. The algorithm is going to be inductive - given a
Cartesian tree built from n− 1 elements, we’re going to extend it to n. A Cartesian tree
for one element is just simply one node. In order to maintain the fact that an inorder
traversal yields the original array, new nodes must be added as right children with the
previous elements to their left. In order to maintain the fact that the tree is a min-heap,
we can only add a new node as a child of nodes it’s greater than.

These two observations form the following algorithm:

• Keep a stack of “active” nodes.

• To insert a new node:

– While the stack is not empty and the top node has a value greater than the
new node:

∗ Pop nodes off the stack

– Make the parent of the new node the top of the stack, or null if the stack is
empty (the new node is now the root).

– Make the left child of the new node the last node that was popped off the
stack, null if nothing was popped off.

– Add the new node to the stack.

Although this algorithm has a nested loop, each node is visted at most twice: once
on entering the stack and once when popped off. Therefore, this algorithm runs in Θ(n)
and does at most 2n operations.

In order to check whether two trees are isomorphic, we can use a shortcut. Instead
of actually generating the Cartesian tree for a particular array, notice that the resulting
Cartesian tree is determined by the sequence of pushes and pops from the stack. If we
call a push “1” and a pop “0”, then we have a binary number we’ll call the Cartesian
tree number with length at most 2n. In order to compare two arrays, we’ll compare the
two Cartesian tree numbers (padding with extra 0’s if the length is less than 2n). This
approach answers our first question of determining whether B1 ∼ B2, but we still need
to determine how many possible unique blocks there are. If our number is at most 2b bits
long, where b is the size of each block, then there are at most 22b = 4b possible numbers
(the actual number is determined by Catalan numbers and is equal to 1

b+1

(
2b
b

)
≈ 4b

b3/2
√
π

).
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2.7 The Final Algorithm

Figure 6: The final RMQ structure

Recall that we used a sparse table on the summary array with full precomputation
on each block, yielding a query time of O(1). Our precomputation time is:

O(n+
n

b
log n+ (# of distinct blocks)b2)

and with our Cartesian tree observation, the number of distinct blocks is at most 4b.

O(n+
n

b
log n+ 4bb2)

In order to pick b, note that 4b grows exponentially if b > log n, and n
b log n will be

greater than n if b < log n. Thus, we should pick b = k log4 n where k is some constant.

O(n+
n

k log4 n
log n+ 4k log4 n(k log4 n)2)

O(n+ n+ nk(k log4 n)2)

In order to analyze the last term, we’ll have to go on a mathematical tangent.
A function f(n) is polylogarithmically bounded if f(n) = O(logk n) for some

constant k.
Theorem: Any positive polynomial function grows faster than any polylogarithmic

function, i.e. logb n = o(na) for any constants a, b > 0.
Lemma: limx→∞ x

k =∞ ∀k ≥ 0. Proof: let c be some constant.

xk ≥ c

x ≥ c
1
k
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Since c
1
k is constant, for any constant c, xk can exceed it if x is big enough, thus the

limit is equal to infinity.
A direct proof of the theorem is to setup an infinite limit from the definition of o:

lim
x→∞

(log x)b

xa

Use L’Hôpital’s rule to evaluate the indeterminate form

= lim
x→∞

b(log x)b−1 · 1x
axa−1

= lim
x→∞

b

a

(log x)b−1

xa

This results in another indeterminate form. Repeat taking derivatives until the power
log x is raised to is less than 0, showing the limit is equal to 0 as the denominator
approaches infinity.

A more intuitive proof results from the fact that exponents grow faster than polyno-
mials, i.e. nb = o(an) ∀a > 1.

lim
x→∞

xb

ax

= lim
x→∞

bxb−1

(ln a)ax

Repeat taking derivatives until the power x is raised to is less than 0, showing the limit
is equal to 0 as the denominator approaches infinity.

Substitute n = log x, resulting in (log x)b = o(alog x) which is equivalent to o(x
1

log a )
by change of base, and thus logb n = o(na).

Going back to the expression we had for the preprocessing time:

O(n+ n+ nk(k log4 n)2)

In order to make this linear, k < 1, or else nk will not be linear, and k > 0 since
block size can’t be 0. Thus, we can pick any value in 0 < k < 1 and essentially ignore
the (log n)2 term since it is bounded by any polynomial. The standard pick is k = 1

2 ,
but that seems mostly arbitrary.

To conclude, we now have a Fischer-Heun structure that solves RMQ in an
asymptotically optimal 〈O(n), O(1)〉.

• Set b = k log4 n = 1
2k log2 n where k = 1

2 .

• Split the array into blocks of size b and calculate the minimum for each block.

• Build a sparse table on that minima array.

• Build fully preprocessed RMQ structures on each block, avoiding recomputing the
same RMQ structure for blocks with the same Cartesian tree number.

• Answer queries using the standard hybrid approach.

A sample implementation can be found here.
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3 Sample Problems

1. SPOJ RMQSQ: Direct application of RMQ.

2. USACO Max Flow or any problem involving Lowest Common Ancestor (LCA).
LCA can be converted into RMQ in linear time and vice versa - the method is to
perform an Euler tour on the tree. An Euler tour is essentially a combination of a
preorder traversal and a postorder traversal that yields a list of nodes. If a node
has children, we add it to the list and then recursively DFS on its children. After
the recursive DFS call, we add the node to the list again. The LCA between two
nodes in the graph must appear between the two nodes in this array. Other nodes
not on the path between the two nodes may also appear between them, but they
are guaranteed to have greater heights than the LCA.

Some implementation details: I maintain a dictionary mapping a node to its first
occurence in the array, the array itself, which contains the height of each node, and
an inverse array mapping a position in the array to the node which it represents.
The LCA between two nodes u, v is then inverse[RMQ(array, indexes[u], indexes[v])].

3. SPOJ BEADS, SPOJ LPS, Leetcode LPS, Leetcode palindromic-substrings, etc.

The Longest Common Prefix (LCP) is the length of the longest common prefix
between two strings. For example, the LCP between “abcd” and “abef” is 2. The
LCP array is then the LCP value between adjacent suffixes in the suffix array
(the suffix array stores all of the suffixes of a given string sorted lexicographically).

However, our LCP array only stores the LCP value for adjacent suffixes. How do
we generalize to the LCP between any two suffixes?

The observation is that the LCP value between two nonadjacent suffixes is the
minimum LCP value between them in the LCP array. To see why this is true,
notice that LCP decreases monotonically moving away from a suffix. Since the
suffix array is sorted lexicographically, suffixes with a larger LCP value must be
closer than suffixes with a smaller LCP value to a particular suffix. Call the LCP
value h and the minimum LCP value between the two suffixes m. h ≤ m because
of monotonicity. Also, h ≥ m because a range minimum of m implies that there
exists a prefix of length m common to all the suffixes between two suffixes, thus
the LCP is at least m. If m ≤ h ≤ m, then h = m.

Thus, we can construct the Fischer-Heun RMQ structure on the LCP array. Then,
the LCP between two suffixes i and j is lcp[rmq(lcp, i, j - 1)] assuming i ≤ j which
is an O(1) query. This allows us to solve a variety of string problems.

4. RMQ can simulate a sliding window/monotonic queue.
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4 Picking k

Why don’t we use derivatives to optimize b like before? Try solving

−
n ln(nb )

b2 ln 2
− n

b2 ln 2
+ 4bb2 ln 4 + 2b4b = 0

with no assumptions about b. Or, assuming b = k log4 n:

k2nk ln3 n

ln2 4
+

2knk ln2 n

ln2 4
−
n ln 4 ln n ln 4

k lnn

k2 ln 2 lnn
− n ln 4

k2 ln 2 lnn
= 0

These equations may not be mathematically solvable.
As previously mentioned, k is empirically determined. My 2n jump pointer solution

on USACO Max Flow (aforementioned) gets 12/15 of the testcases. Fischer-Heun, how-
ever, gets 8/15 with k = 1

2 . At this point, the reader may be tempted to exclaim “I told
you so!”. With any complex algorithm, there is always the temptation to say “While
asymptotically optimal, the large constant factors make a tighter, asymptotically infe-
rior algorithm outperform it in practice.” Not in this case! With k = 1, Fischer-Heun
achieves 15/15 on Max Flow. Thus, the choice of k is nontrivial.

On SPOJ RMQSQ, there are also modest performance gains: 1.39 seconds for k = 1
2

compared to 0.98 seconds for k = 1.

(a) Preprocessing time (b) Query time

Figure 7: Running time of the algorithm with varying k

The query times are basically random noise - the range is within 5 hundredths of a
second. This is to be expected as query is O(1) and independent of k.

However, k does matter for preprocessing time, and the clear winner is k = 1. This,
coincidentally, is also probably the simplest choice.
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5 Past Lectures

1. BITs

(a) “Binary Indexed Trees” (Patrick Zhang, 2019)

(b) “Binary Indexed Trees” (Daniel Wisdom, 2018)

(c) “Binary Indexed Trees” (Justin Zhang, 2017)

(d) “Binary Indexed Trees” (Nick Haliday and Ryan Jian, 2012)

2. Segment trees

(a) “Segment Trees” (Richard Zhan, 2019)

(b) “2018-10-19 Segment Trees” (George Tang, 2018)

(c) “Segment Trees” (Justin Zhang, 2017)

(d) (Broken) “More Segment Trees” (Kevin Geng, 2017)

(e) (Broken) “Segment Trees” (Charles Zhao, 2016)

(f) (Broken) “
√
n Bucketing and Segment Tree” (Samuel Hsiang, 2015)

(g) (Unavailable) “Segment Tree (and its variants)”
(Wassim Omais and Shwetark Patel, 2016)

3. Lowest Common Ancestor

(a) “Lowest Common Ancestor” (Richard Zhan, 2019)

(b) “Lowest Common Ancestor” (Daniel Wisdom, 2017)

(c) “Lowest Common Ancestor” [most similar to this lecture]
(Matthew Savage, 2015)

(d) (Broken) “LCA and 2n Jump Pointers” (Larry Wang, 2016)

4. Longest Common Prefix

(a) “Suffix Arrays and Longest Common Prefix” (Daniel Wisdom, 2019)

(b) Constructing LCP array

5. “January Contest Review (
√
N decomposition”)

(Justin Zhang and Daniel Wisdom, 2018)

6. “Simple Range Queries” (Justin Zhang, 2017)

7. “Advanced Data Structures” [for RMQ] (Alex Chen, 2011)

6 Works Cited

1. Stanford lectures

(a) Part one

(b) Part two
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