
Introduction to Dynamic Programming

Pranav Mathur
Based on Daniel Wisdom’s Lecture

December 11th, 2020

”Those who cannot remember the past are condemned to repeat it” - George Santayana

1 Introduction

Dyanamic programming is an extremely powerful technique that can greatly reduce the time complexities
of your solutions. It is heavily tested in the Gold and Platinum divisions of USACO and shows up in nearly
every other programming contest.

1.1 Example - Fibonacci Numbers

To illustrate the power of dynamic programming, let’s look at a classic application - finding the nth Fibonacci
number. Recall that the Fibonacci sequence is a recursive sequence with F0 = 0, F1 = 1, and, for n ≥ 2,
Fn = Fn−1 + Fn−2. This definition motivates the following recursive solution.

Algorithm 1.1 Fibonacci - Näıve

function fib(n)
if n = 0 or n = 1 then

return n
else

return fib(n− 1) + fib(n− 2)

This solution runs in O(2n) time since for each call to the function, we make two more recursive calls. To
see how to speed this up, let’s look at an example. Say we want to compute F10. we call FIB(10), which
calls FIB(9) and FIB(8). Then, FIB(9) calls FIB(8) and FIB(7). Note that we call FIB(8) twice, even
though the value returned from both calls is the same!

To solve this problem, we maintain an array that keeps track of all the values of all the Fibonacci numbers
we have already calculated.

Algorithm 1.2 Fibonacci - Top-Down Dynamic Programming

initialize dp[0 . . . n]← −1
function fib(n)

if dp[n] 6= 0 then
return dp[n]

if n = 0 or n = 1 then
return n

else
dp[n]← fib(n− 1) + fib(n− 2)
return dp[n]

This solution reduces the runtime of the recursive solution from O(2n) to O(n) since each Fn is only computed
once. This is an enormous improvement and illustrates the power of dynamic programming. However, there
is still another improvement we can make. Using recursion comes with an overhead cost due to several
function calls. We can eliminate this overhead by computing Fn from the ”bottom-up” instead of ”top-
down” (see sections 2.2 and 2.3). This means we start with F0 and F1, then compute F2, then F3, and so
on until we get Fn.

Algorithm 1.3 Fibonacci - Bottom-Up Dynamic Programming

function fib(n)
initialize dp[0 . . . N ]
dp[0]← 0
dp[1]← 1
for i← 2 . . . n do

dp[i]← dp[i− 1] + dp[i− 2]

return dp[n]

By using dynamic programming, we have reduced a O(2n) recursive solution to a O(n) solution with no
recursive overhead. In general, DP reduces the time complexities of problems from exponential to polynomial.

1



2 How Do I Use Dynamic Programming?

2.1 When to Use DP

The Fibonacci numbers problem has some important properties that are critical to our ability to apply a DP
solution. First, recall that our call to FIB(10) led to multiple calls of FIB(8) (and FIB(7), FIB(6),. . .)
that all had the same answer. This property is known as overlapping subproblems.

Now, remember that in our iterative solution, we used the solutions to FIB(1 . . . 9) to calculate FIB(10).
This property is called optimal substructures.

Together, these properties form the criteria for applying dyanmic programming to a problem. Here they are
again, written in general terms.

• overlapping subproblems - solutions to subproblems with the same state variables (see section 4)
are used repeatedly.

• optimal substructures - solutions to subproblems are part of the solution to the original problem.

There are generally two approaches to coding DP solutions, which are covered in the next two sections.

2.2 Top-Down DP

Top-down DP involves implementing a recursive solution and maintaining a table with already-computed
values. This method is also called memoization.

Advantages

• Only computes subproblem solutions that are necessary for solving the original problem.

• Easier to understand conceptually when starting out.

Disadvantages

• Overhead due to recursion.

• Code is generally longer.

2.3 Bottom-Up DP

Bottom-up DP involves computing subproblems iteratively in a way that all previous values needed to
compute the current value have already been computed. To illustrate, in the Fibonacci example, we used
bottom-up DP when we computed FIB(1 . . . N − 1) before trying to compute FIB(N).

Advantages

• Good when many subproblems are revisited, since there is no overhead due to recursion.

• Opportunities for memory optimization, such as sliding-window trick.

• Code is generally shorter and cleaner.

Disadvantages

• May compute unecessary subproblems.

Both these approaches have the same time complexity, and which one you use is largely a matter of prefer-
ences, but keep in mind the above advantages and disadvantages when deciding between the two.

3 Knapsack Problem

The knapsack problem is a canonical DP problem with many varieties and is tested often in the USACO Gold
and Platinum Divisions. When reading through the following sections, try to understand the motivations
and broader ideas of DP so you can apply them to other problems.

3.1 0-1 Knapsack Problem

Suppose you have a knapsack with a maximum weight capacity of M and you want to fill it up with objects.
You have N distinct objects, and the kth object has a value vk and a weight wk. What combination of
objects should you choose so that you maximize the value of the objects in your knapsack while staying
within the weight limit?

Your first impulse may be to try a greedy solution in which you pick objects in order of their value. However,
it is quite easy to find an example that breaks this solution (Try M = 7, N = 3 and the (value, weight) pairs
of the objects are (7, 7), (5, 5), and (3, 2)). When greedy doesn’t work, we try DP.

The first step to solving any DP problem is to decide what variables we will use to define our states.
This is generally the most difficult step. To start, let’s think about what happens when we add item N to

2



the knapsack. If the knapsack is empty, then the remaining capacity of the knapsack is now M − wN and
the value of the knapsack is vN . Now, since we have used item N , we must now fill a weight of M − wN

with the remaining items. This problem is analogous to maximizing the value of a knapsack with capacity
M − wN with objects 1 . . . N − 1. Aha! We have discovered optimal substructures.

What about overlapping subproblems? Note that we may get to the problem of filling a knapsack with
weight m < M using objects 1 . . . k in multiple ways (try thinking of some examples). Thus the overlapping
subproblems condition is satisfied.

Now, lets outline a solution. Since our states are defined by the capacity of the knapsack and the ob-
jects we can choose from, let’s define dp[k][m] as the maximum value we can obtain in a knapsack with
weight capacity m with objects 1 . . . k. We define our state in this way so that we can easily transi-
tion to subproblems by choosing either to skip object k or to add it. Our recurrence relation is then
dp[k][m] = max(dp[k − 1][m], dp[k − 1][m − w[k]] + v[k]). Before we start coding, let’s determine our base
cases for recursion. Clearly, dp[k][0] = 0 for all k and dp[0][m] = 0 for all m. These cases are where we
terminate our top-down solution or begin our bottom-up solution.

Algorithm 3.1 0-1 Knapsack Problem Top-Down Solution

initialize dp[1 . . . N ][0 . . .M ]← −1
dp[1 . . . N ][0]← 0
dp[0][0 . . .M ]← 0
function knapsack(k, m)

if k = 0 or m = 0 then . No more objects or knapsack is full
return 0

if dp[k][m] 6= −1 then . Already computed this subproblem
return dp[k][m]

if w[k] > m then . Can’t fit object k
dp[k][m] = knapsack(k − 1,m) . Skip object k

else
dp[k][m] = max(knapsack(k − 1,m),knapsack(k − 1,m− w[k]) + v[k])

return dp[k][m]

Algorithm 3.2 0-1 Knapsack Problem - Bottom-Up Solution

initialize dp[1 . . . N ][0 . . .M ]← −1 . Final answer will be in dp[N ][M ]
dp[1 . . . N ][0]← 0
dp[0][0 . . .M ]← 0
for k from 1 . . . N do . Compute solution for items 1 . . . k − 1 before 1 . . . k

for m from 1 . . .M do
dp[k][m] = dp[k − 1][m] . Applies to all objects
if w[k] ≤ m then . Can fit object k

dp[k][m] = max(dp[k − 1][m], dp[k − 1][m− w[k]] + v[k])

Note that both solutions have the same time complexity of O(NM), but the top-down solution is somewhat
be easier to understand, while the bottom-up solution has shorter code. It’s up to you which one to use.

3.2 Unbounded Unordered Knapsack Problem

This variant of the knapsack problem is very similar to the 0-1 variant, but instead of having N distinct
objects, we have N distinct types of objects and an unlimited supply of each type (hence the name ”un-
bounded”). The order in which the objects are placed into the knapsack does not matter.

The solution to this problem is nearly identical to the solution to the 0-1 problem, but with one distinction.
Note that since we can add an object of type k as many times we we want, instead of transitioning to state
dp[k − 1][m − w[k]], we transition to state dp[k][m − w[k]], since object k is still available to us. Thus, our
recurrence relation is dp[k][m] = max(dp[k − 1][m], dp[k][m− w[k]] + v[k]).

I will omit pseudocode for the top-down approach, since it is nearly identical to the 0-1 top-down solu-
tion. However, there is a clever memory optimization we can make to the bottom-up approach. Note that
as we are iterating through 0 . . .M , we only need to access values to the left of the current index in the same
row (dp[k][m−w[k]]) and the value at the current index in the previous row (dp[k−1][m]). We never use the
values in dp[1 . . . k− 1][0 . . .m− 1] again. With this observation in mind, I claim that instead of maintaining
a dp[1 . . . N ][0 . . .M ], we only need to maintain dp[0 . . .M ] and we can update this array in each iteration.
Our recurrence in code will then be dp[m] = max(dp[m], dp[m − w[k]]). To see why this is true, note that
we have already computed dp[m] for all values of m to the left of the current index for the current k. Thus,
this range represents dp[k][0 . . .m− 1] in our previous solution. Anything at or after our current index has
not been computed, so it represents dp[k − 1][m. . .M ] in our previous solution. Thus, all the information
we need can be stored in the one-dimensional DP array.

3



Algorithm 3.3 Bottom-Up Unbounded Knapsack Solution with Memory Optimization

initialize dp[0 . . .M ]← 0 . Final answer will be in dp[M ]
for k from 1 . . . N do

for m from 1 . . .M do
if w[k] ≤ m then

dp[m] = max(dp[m], dp[m− w[k]] + v[k])

This example demonstrates how bottom-up approaches can allow for clever optimzations that streamline
your code.

3.3 Application - Subset Sum

In this problem, you are given the set of positive integers 1, 2, . . . , N and are asked to divide it into two sets
with equal sum.

First, note that if the sum of the integers from 1 . . . N is odd, such a separation is impossible. If the

sum is even, each subset will have sum S = N(N+1)
4 . Thus, our problem is reduced to finding the number of

ways to choose a subset of 1, 2, . . . N that adds up to S.

This problem can be solved using a variant of the 0-1 knapsack problem. It differs from the problem in
section 3.1 since instead of finding the maximum possible value of the knapsack, we are asked to find the
number of ways to fill the knapsack. Note that we can either choose to ignore a number k, leaving us with
the numbers 1 . . . k − 1 tog get a sum of s, or add a k to our subset, leaving us with the numbers 1 . . . k − 1
to get a sum of s− k. Thus, our recurrence relation is dp[k][s] = dp[k − 1][s] + dp[k − 1][s− k]. Again, the
code for this problem is nearly identical to the code in section 3.1.

4 General Strategy

1. Identify state variables - These can be thought of as the arguments passed into the recursive
solution. Generally, the more state variables you have, the slower your solution will be. For example,
if the problem you are solving is f(a, b, c), with a from 0 . . . A, b from 0 . . . B, and c from 0 . . . C, then
the time complexity of a bottom-up solution is O(ABC).

2. Write recurrence relation - Yes. ”Write” it. On paper. Since DP code is generally very simple
and difficult to discern the problem from, working out full DP states and transitions on paper can be
extremely helpful in making sure you have the correct solution to your specific and anticipating bugs
before you code.

3. Determine base cases - DP solves recursive problems, so there will be a base case.

4. Code - This is generally the fastest part of solving a DP problem. Make sure you code base cases
correctly and pay attention to indexing and order of nested loops.

5 Practice Problems

The only way to get good at DP problems is to, and I cannot stress this enough, PRACTICE. The following
resources offer excellent problems to apply your new DP skills :))

• USACO Guide Introduction to DP - https://usaco.guide/gold/intro-dp

• USACO Guide Knapsack Problem - https://usaco.guide/gold/knapsack

• CSES Dynamic Programming Problems (also linked in USACO Guide) - https://cses.fi/problemset/

• Codeforces DP Problems - https://codeforces.com/problemset?order=BY RATING ASCtags=dp

4

https://usaco.guide/gold/intro-dp
https://usaco.guide/gold/knapsack
https://cses.fi/problemset/
https://codeforces.com/problemset?order=BY_RATING_ASC&tags=dp

	Introduction
	Example - Fibonacci Numbers

	How Do I Use Dynamic Programming?
	When to Use DP
	Top-Down DP
	Bottom-Up DP

	Knapsack Problem
	0-1 Knapsack Problem
	Unbounded Unordered Knapsack Problem
	Application - Subset Sum

	General Strategy
	Practice Problems

