# SCT Modular Math 

Andrew Wang

February 2021

## 1 Introduction

Modular Arithmetic works with remainders instead of integers. For example,

$$
9 \bmod 5=4
$$

since the remainder of 9 divided by 5 is 4 . In contests, you'll often see modular arithmetic used to avoid dealing with large numbers that overflow.

### 1.1 Modular Arithmetic Properties

Some common properties in modular arithmetic:

$$
\begin{gathered}
(a+b) \bmod m=(a \bmod m+b \bmod m) \bmod m \\
(a-b) \bmod m=(a \bmod m-b \bmod m) \bmod m \\
(a \cdot b) \quad(\bmod m)=((a \bmod m) \cdot(b \bmod m)) \bmod m \\
a^{b} \bmod m=(a \bmod m)^{b} \bmod m
\end{gathered}
$$

## 2 Optimizations

Taking the modulo of a number over and over again can be very time-costly due to the high constant factor.

### 2.1 Pre-Calculation

If we're taking the modulo of some set of numbers over and over again(i.e powers of numbers), it may be faster to pre-calculate the modulo of each of these numbers beforehand.

### 2.2 Addition and Subtraction

Since the \% operator has a much higher constant factor compared to more elementary operators like addition or subtraction, always use addition and subtraction when you have the choice. For example,

$$
9 \bmod 5=9-5 .
$$

## 3 Tips \& Tricks

- Take the modulo of each number before performing operations to prevent overflow.
- While debugging, if you come across a negative number it almost always means overflow.


## 4 Euler's Totient Theorem

Euler's Totient Function is commonly seen in number theory. It states:

$$
a^{\varphi(n)}=1 \bmod n
$$

### 4.1 Fermat's Little Theorem

Fermat's Little Theorem is an extensions of Euler's Totient where $n$ is a prime number. This simplifies to:

$$
a^{p-1}=1 \bmod p
$$

where $p$ is any prime.

### 4.2 Modular Inverse

Dividing can be very difficult while in some $\bmod n$. For example,

$$
(9 / 3) \bmod 5 \neq((9 \bmod 5) /(3 \bmod 5)) \bmod 5
$$

Luckily, using modular inverses, we can safely divide numbers without worrying about mistakes during division. The modular inverse of a number is equivalent to the reciprocal but in a certain mod.

$$
a / b \bmod m=a * i \bmod m
$$

where i is the modular inverse of b . The modular inverse of $b \bmod m$, is equivalent to $b^{m-1} \bmod m$ since by Fermat's:

$$
b^{m-1} \bmod m \equiv 1 \bmod m
$$

if $m$ is prime. Finding $b^{m-1}$ is a much simpler task which can be solved using binary exponentiation or pre-calculating the powers of a number as mentioned before.

### 4.3 Example Problem: Binomial Coefficients

1. Pre-calculate factorials in an array
2. $\frac{a!}{b!(a-b)!} \bmod m=a!\cdot$ inverse $(b!) \cdot$ inverse $((a-b)!) \bmod m$
3. calculate the inverses using binary exponentation

## 5 Miscellaneous

Sometimes, problem-setters mess up!

### 5.1 Challenge Problem: USACO Gold walk

Although the intended solution is an $O\left(N^{2}\right)$ MST, this can be easily fakesolved in $O(1)$ using some modular arithmetic. The general idea is to maximize the function:

$$
\min _{x, y \text { in different groups }}(2019201997-84 x-48 y) \text {. }
$$

This can be done by placing the smallest $k-1$ in their own distinct group and the other larger numbers together in one group. Simplifying gives us the equation:

$$
2019201997-84(k-1)-48 n
$$

(For a full proof check out the full solution)

## 6 Resources

### 6.1 References

- USACO Guide Modular Arithmetic
- CPH Modular Math


### 6.2 Problens

- USACO Guide Problem set (At the end of the page)

