
Computational Geometry

Alvan Caleb Arulandu & Sameer Gabbita

March 2021

1 Introduction

Geometry is a branch of math concerning points, lines, and higher dimensional
surfaces. It is also a common topic in higher divisions of competitive program-
ming contests including but not limited to USACO, ICPC, and Codeforces. This
lecture will cover common computational geometry algorithms as well as basic
mathematical tricks to assist you in solving harder problems.

2 Vectors

A vector is a geometric object with a magnitude and direction that can be rep-
resented as a list of components in each dimension for most intensive purposes.

~x = x = [x1, x2, · · · , xn] ∈ Rn

Vectors can be represented by drawing an arrow from an arbitrary starting point
(say the origin) to an end point given by the components of the vector.

2.1 Elementary Operations

2.1.1 Scalar Multiplication

To multiply a vector ~x ∈ Rn by scalar s ∈ R, simply multiply each component
by the scalar:

s~x = ~y = [y1, y2, · · · , yn] : yi = s · ai ∀ 1 ≤ i ≤ n

2.1.2 Addition

To add to vectors ~a,~b, simply add up each component:

~a+~b = ~c = [c1, c2, · · · , cn] : ci = ai + bi ∀ 1 ≤ i ≤ n

To subtract vectors, simply add the (−1)~b which can be calculated with scalar
multiplication.

1

2.1.3 Magnitude

The magnitude of ~v can be interpreted as the length of the ”arrow” from the
start to end point. Using a generalized Pythagorean Theorem we have,

|~v| = v =

√√√√ n∑
i=1

v2i

Unit vectors are vectors with magnitude 1. These can often make computations
easier where magnitude is irrelevant.

v̂ =
~v

|~v|

In 3D space î, ĵ, k̂ represent the 3 unit vectors lying on the axes x, y, z respec-
tively. Note that every vector can be written as a sum of it’s components times
a unit vector along each component axis.

2.1.4 Dot Product

There are two types of vector multiplication, one of which is known as the dot
product. The dot product computes a sum of element-wise multiplications of
two vectors yielding a scalar.

~a ·~b =

n∑
i=1

aibi

The vector dot product also has a nice geometric interpretation when it comes
to vector projection:

~a ·~b = |a||b| cos θ

Here we say that ~b is projected onto ~a. As shown by the above relationship with
cos the vector dot product yields useful information about the angle between
two vectors in an O(n) computation.

2.1.5 Cross Product

The second type of vector multiplication is known as the cross product and is a
method of multiplying two vectors to yield a third orthogonal vector. We can
represent the vector cross product as a matrix determinant:

~a×~b = |~a||~b| sin θ · n̂

Note that n̂ is the unit vector orthogonal to ~a,~b. For n = 3 the following
notational trick can be used for computation:

= det

x̂1 x̂2 x̂n
a1 a2 a3
b1 b2 b3

2

The cross product also has a ton of neat relationships and applications.

|~a×~b| = |~a||~b| sin θ

2.1.6 Uses

Vector properties are frequently used in distance computations between various
objects (commonly seen in multi-variable calculus). Additionally, the multi-
plicative properties of vectors can be exploited to determine if line segments are
perpendicular.

3 Coordinate Systems

Most readers are well aware of Cartesian coordinates (x, y). However, in some
cases other coordinate systems like polar can be used to solve problems. Instead
of relying on rectangular position, polar coordinates represent points with a
radius r and a phase/angle θ; (r, θ). In this system,

r2 = x2 + y2

tan
(y
x

)
= θ

Please note that this implies that the same point can be represented in infi-
nite ways in polar coordinates. This only applies to two dimensions but there
are similar systems available for three dimensions. Cylindrical coordinates are
similar to polar coordinates with an added z = z equality; (r, θ, z). Spherical
coordinates introduce a third angular parameter φ which is the angle from the
radius to the z axis; (ρ, θ, φ).

4 Sweep Line Algorithms

Sweep-line algorithms are a set of algorithms that follow a similar idea regarding,
you guessed it - a sweeping line! These algorithms imagine sweeping a line across
a plane stopping at points that intersect or are in close proximity to the line. A
certain operation is then done on these points such that a complete solution is
available by the time the line crosses the entire plane.

4.1 Line Segment Intersection

The line segment intersection problem consists of detection and calculation. One
task is to determine if a set of line segments have an intersection. The other is
to determine all intersections of the line segments.

3

4.1.1 Two Segments

The ”algorithm” for two segments is fairly simple and amounts to a plethora
of if statements checking orientation cases for detection and Cramer’s rule for
calculation.

4.1.2 Bentley-Ottmann Algorithm

However, for n > 2 line segments, is harder. A naive approach (testing every
pair) takes O(n2). But, using this sweep line algorithm allows us to calculate
a list of intersection points from a set of line segments in O((n+ k) log n) time
where n is the number of line segments and k is the number of intersections.

Note that worst case, k = n(n−1)
2 .

4.1.3 Shamos-Hoey Algorithm

As a side-note, this algorithm applies binary search trees to this problem yielding
O(n log n) complexity to detect line segment intersections.

5 Convex Hull

Convex Hull is an algorithm that can find the smallest convex polygon that
contains all given points (aka the convex hull) for 2D or 3D points and are
bounded by the upper bound theorem for higher dimensions. Naively, finding
the convex hull takes O(n3) time where we can iterate through all possible line
segments, and add it to the convex hull if all the other points are to its left.

5.1 Graham Scan

def graham scan (po in t s) :
s t = []
p0 = point with s m a l l e s t y−coord inate
so r t ccw (po in t s)
s t = [po in t s [0] , po in t s [1]]
for i in range (2 , len (po in t s)) :

while len (s tack) > 2 and po in t s [i] i s r i g h t o f s t [−1] and s t [−2] :
s t . pop ()

s t . push (po in t s [i])

5.2 Andrew’s Algorithm

def andrews algo (po in t s) :
s o r t b y x c o o r d i n a t e (po in t s)
upper = []
lower = []

4

for po int in po in t s :
while d i r e c t i o n () == l e f t :

upper . remove (s e c o n d t o l a s t p o i n t)
upper . append (po int)

for po int in po in t s :
while d i r e c t i o n () == r i g h t :

lower . remove (s e c o n d t o l a s t p o i n t)
lower . append (po int)

convex hu l l = merge ()
return convex hu l l

Figure 1: Andrew’s Scan (From CPH)

6 Distances

6.1 Point-Plane

D = |n̂ · (~p− ~q)|

where n̂ is the unit normal vector of the plane, ~p is the point, and ~q is an
arbitrary point on the plane.

5

6.2 Point-Point

D = |~a−~b|

where ~a,~b are vectors to the points of interest.

6.3 Point-Line

D = |n̂ · (~p− ~q)|
where n̂ is the unit normal vector from the line, ~p is the point, and ~q is an
arbitrary point on the line.

6.4 Plane-Plane

If the planes are parallel, pick an arbitrary point on one and use Point-Plane.
Otherwise, the planes must intersect so the distance is 0.

6.5 Line-Line

If the lines are parallel, pick an arbitrary point on one of the lines and use
Point-Line. Otherwise, find the distance between the two parallel planes each
containing one of the lines.

6.6 Plane-Line

If the line is parallel to the plane, then use Point-Plane with an arbitrary point
on the line. Otherwise, they must intersect so the distance is 0.

6.7 Shoelace Theorem

6.7.1 Statement

Suppose polygon P has vertices (a1, b1), (a2, b2), · · · , (an, bn) in clockwise order.
Then the area A of P is

A =
1

2
|

n∑
i=1

(xi+1 + xi)(yi+1 − yi)|

=
1

2
|(a1b2 + a2b3 + · · ·+ anb1)− (b1a2 + b2a3 + · · ·+ bna1)|

6.7.2 Algorithm

This method works by dividing up the polygon into many triangles formed from
2 vertices of the polygon and an origin O. We can then sum the areas of those
individual triangles to find the total area of a polygon. To find the area of these
individual triangles, we can use the cross-product, which gives the area of a
parallelogram, and divide it by 2 to find the area of the triangle. As a result,
this algorithm runs in O(n) time where n is the number of points in the polygon.

6

6.8 Pick’s Theorem

Pick’s theorem can be used for lattice-point polygons as states,

Area = a+
b

2
− 1

where a is the number of lattice points strictly inside a polygon and b is the
number of lattice points that are on the edges of a polygon.

6.9 Cramer’s Rule

Cramer’s rule is a way to analytically solve a system of equations using the
determinant of a matrix. Given the following system of equations

a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

we can solve the system of equations where x = Dx/D, y = Dy/D, z =
Dz/D given that D 6= 0 where

D = det

a1 b1 c1
a2 b2 c2
a3 b3 c3

Dx = det

d1 b1 c1
d2 b2 c2
d3 b3 c3

Dy = det

a1 d1 c1
a2 d2 c2
a3 d3 c3

Dz = det

a1 b1 d1
a2 b2 d2
a3 b3 d3

7 Miscellaneous

This section contains a list of miscellaneous topics that you may/may not en-
counter in competitive programming problems but is included for sake of com-
pleteness and the reader’s own interest.

7.1 Upper Bound Theorem

The theorem states that cyclic polytopes (polytopes formed as a convex hull
around a rational normal curve where n > d) have the largest possible number
of faces among all convex polytopes with a given dimension and number of
vertices. Note that n is the number of points and d is the dimension of the
space.

7

7.2 Area of a Triangle

[4ABC] =
bh

2
=
ab sinC◦

2
=
|~u× ~v|

2
=
√
s(s− a)(s− b)(s− c) = rs =

abc

4R

7.3 Approximations / Expansions

sin θ =

∞∑
k=0

(−1)kθ2k+1

(2k + 1)!

cos θ =

∞∑
k=0

(−1)kθ2k

(2k)!

8 Problems

8.1 Practice

• Cow Steeplechase II

• Water Balance

• CSES Geometry Problems

• Imperfect GPS

• Polygon Area

• Cut Length

8.2 Custom: Hurdles

8.2.1 Problem

Gleb is running the ”free-meter” hurdles. There are N hurdles given as points
(xi, yi) in the Cartesian plane such that |x|, |y| < 109 and no two points (x1, y1), (x2, y2)
are co-linear with the origin (0, 0). Gleb starts at (1, 0) and must cross each
hurdle exactly once in any particular order before returning to the starting point
to finish the race. There is no hurdle at the starting point. If Gleb runs at πe
meters per second, what is the floor of the minimum time to finish the race so
that Gleb can smoke the competition?

8.2.2 Input

Input starts with one line containing the integer 1 < N < 108. The next N
lines contain two comma separated integers x, y. Ex:

3
1 ,1
−1,0
0,−1

8

http://usaco.org/index.php?page=viewproblem2&cpid=943
https://codeforces.com/problemset/problem/1299/C
https://cses.fi/problemset/
https://open.kattis.com/problems/imperfectgps
https://open.kattis.com/problems/polygonarea
https://codeforces.com/contest/598/problem/F

8.3 Output

Output should consist of one integer, the floor of the minimum time. For this
example, the total distance is 1 +

√
5 + 2

√
2 ≈ 6.06→ 6. Ex:

6

9 Sources

• Shoelace Theorem (AOPS)

• Shoelace Theorem (Mathologer)

• Pick’s Theorem (AOPS)

• Andrew’s Algorithm (USACO Guide)

• Graham Scan (CS133)

9

https://artofproblemsolving.com/wiki/index.php/Shoelace_Theorem
https://www.youtube.com/watch?v=0KjG8Pg6LGk
https://artofproblemsolving.com/wiki/index.php/Pick's_Theorem
https://usaco.guide/CPH.pdf#page=288
https://www.cs.ucr.edu/~eldawy/19SCS133/slides/CS133-04-ConvexHull.pdf

	Introduction
	Vectors
	Elementary Operations
	Scalar Multiplication
	Addition
	Magnitude
	Dot Product
	Cross Product
	Uses

	Coordinate Systems
	Sweep Line Algorithms
	Line Segment Intersection
	Two Segments
	Bentley-Ottmann Algorithm
	Shamos-Hoey Algorithm

	Convex Hull
	Graham Scan
	Andrew's Algorithm

	Distances
	Point-Plane
	Point-Point
	Point-Line
	Plane-Plane
	Line-Line
	Plane-Line
	Shoelace Theorem
	Statement
	Algorithm

	Pick's Theorem
	Cramer's Rule

	Miscellaneous
	Upper Bound Theorem
	Area of a Triangle
	Approximations / Expansions

	Problems
	Practice
	Custom: Hurdles
	Problem
	Input

	Output

	Sources

