
Network Flow

Mikhail Mints

April 16, 2020

1 Introduction

Network flow algorithms are very useful in many different types of problems,
and have a lot of applications. They appear somewhat frequently in USACO
and other programming contests. In this lecture, we will be discussing how
network flow works and some algorithms and ideas related to it.

2 Flow Networks

The most intuitive way of thinking about a flow network is this: We have a
system of pipes (edges) that are connected to each other in junctions (nodes).
Each pipe has a certain capacity - which could be thought of as the maximal
amount of water that can flow through the pipe (in a certain time). The pipes
are directed, each flowing from one node to another. There exist 2 special
nodes, called the source (s) and the sink (t). The water flows out of the
source, travels through the system of pipes, and flows into the sink. Each
pipe has a certain flow going through it, not greater than its capacity. For
each node other than the source and the sink, the total inflow equals the
total outflow, meaning that the sum of flows in incoming pipes equals the
sum of flows in outgoing pipes.

1



We can represent such a network using a weighted directed graph, for
example:

Each of the edges in the graph above represents a pipe, and its weight is
its capacity.

(Note that this particular network flow example used throughout the
lecture was taken from Algorithms by Sedgewick and Wayne.)

3 The Max-Flow Problem

The statement of the max-flow problem is the following: Given a network
with a source node s and a sink node t, find a way to distribute the flow
among the pipes that maximizes the total flow from s to t.

3.1 Simple, Incorrect Solution

Suppose we have a path from s to t. The most flow that we can add is the
minimum of the (remaining) capacities along this path. A simple approach
would be to find possible paths from s to t and add the maximum possible
flow to each of the paths. For the above network, if node 0 is the source and
node 5 is the sink, this could look something like this:

2



After filling in the flows along the two paths shown, we can’t add any
more flow anywhere. So our total flow is 2 + 1 = 3. However, this is not the
optimal solution! We could have actually made our flows go like this:

Here, for all the nodes, inflow still equals outflow, but the total flow is
now 2 + 2 = 4. How can we create an algorithm that solves this problem
correctly?

3



4 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm is the general algorithm for solving net-
work flow problems that can be implemented using a number of different
approaches. But the general idea is based on the following:

4.1 Augmenting Paths

In the previous example, we looked at the directed graph representing the
network and added flow to the paths leading from s to t. We first added the
path 0 → 1 → 3 → 5, and then we added the path 0 → 2 → 4 → 5, after
which we couldn’t add any more paths. But what if we allow paths whose
edges can go in either direction, not just following the directed graph? If we
have such a path, when we travel in the reverse direction, we could subtract
flow from the edge instead of adding it. This will still conserve the property
that inflow must equal outflow. Such a path is called an augmenting path.
In the first image on the last page, we can add the following augmenting
path: 0 → 2 → 3 → 1 → 4 → 5. If we add a flow of 1 along this path
(subtracting in the 3→ 1 edge since it is a backward edge, we can get what
we had in the second picture. We were able to add this path, because for
all the forward edges had some capacity remaining, and all of the backward
edges had some flow left to remove.

4.2 The Algorithm

The Ford-Fulkerson Algorithm is a generalized algorithm for solving the max-
flow problem. It is the following:

Algorithm 1: Ford-Fulkerson

Flow is initially 0 everywhere;
while augmenting path exists do

path ← findAugmentingPath();
for v in path do

Increase flow as much as possible;

Since each time we are adding a new augmenting path, we are adding at
least 1 unit of flow, the algorithm will eventually terminate at the maximum
flow.

4



5 More Specific Algorithms

5.1 Residual Network

How do we actually find an augmenting path in a flow network? There exist
several ways to do that. Most of them use the idea of a residual network.
A residual network is a way of representing the network with the addition of
flows in a way that can help us find new augmenting paths. For each edge
e = (u, v) in the network with flow fe and capacity ce, in the residual network
we have an edge (u, v) with capacity ce−fe, and an edge (v, u) with capacity
fe. In other words, the forward edge represents the remaining capacity and
the backward edge represents the flow. Here is an example for the first image
on page 3:

As you can see in the above image, some pairs of nodes have 2 edges,
and the capacity of the edge going in the backward direction represents the
amount of flow. The edges highlighted in green represent the augmenting
path that needs to be added to this network in order to transform it into the
correct solution.

The reason that we are doing this is because now, when we look at a
path in the residual network, when we are adding flow, we can subtract it
from the capacity of the edge and add it to the edge going in the opposite
direction. If we were originally going in the forward direction (with the
direction of the original network), we are reducing the capacity and adding
flow. If we were going in the backward direction (against the direction of the
original network), we are reducing the flow and adding new capacity. So we
don’t have to worry about whether the edge we are traversing is forward or
backward - we do the same procedure for both.

5



5.2 Edmonds-Karp Algorithm

The Edmonds-Karp algorithm is a specific implementation of the Ford-
Fulkerson algorithm, in which the next augmenting path found is the shortest
path. We can do this by performing a BFS in the residual network. After
we find an augmenting path, we find the amount of flow that can be added
along the path, and update the weights of the forward and backward edges
in the path. This implementation has a runtime of O(V E2)

In another version of this algorithm, instead of finding the shortest path,
we could find the path that has the maximum capacity. That can be done
using a modified version of Dijkstra’s algorithm - you can find this version
described in more detail in the USACO Training pages.

6 Other Max-Flow Algorithms

6.1 Push-Relabel

The push-relabel algorithm is a different max-flow algorithm that is more
efficient than Ford-Fulkerson. It has a complexity of O(V 2E), with some
variants that are more efficient. Instead of adding augmenting paths to the
whole network, this algorithm starts with a pre-flow that does not necessarily
balance the inflow and outflow of each node. Then it applies certain ”push”
and ”relabel” operations that can move the flow between the nodes in order
to convert it into the max-flow. You can look at some of the past lectures or
other online resources if you are interested in learning more about how this
works.

6.2 Linear Programming

The max-flow problem can actually be expressed as a linear programming
problem. Our variables are the flows going through each edge of the network,
and our goal is to maximize the sum of the flows going into the sink subject
to the constraints that each flow must not exceed the capacity of the edge,
and that the inflow and outflow of each node must be equal. This means
that we can use the simplex algorithm and other techniques mentioned in
the Linear Programming lecture in order to solve the max-flow problem.

6



7 The Min-Cut Problem

We can define an st-cut of a network as a partition of the nodes into 2
groups, one containing s and the other containing t. To create this partition,
we need to remove certain edges from the network - this is the cut. Our goal
is to minimize the total capacity of the cut.

7.1 Maxflow-Mincut Theorem

Even though the min-cut problem doesn’t seem very similar to the max-
flow problem, they are actually very closely related. The maxflow-mincut
theorem simply states that for any flow network, the maximum flow equals
the minimum cut. This means that we can actually use the Ford-Fulkerson
algorithm to compute the minimum cut.

After running the Ford-Fulkerson algorithm on a network, it is also pos-
sible to find the actual edges that correspond to the min-cut. At the end of
the algorithm, no more augmenting paths exist between the source and the
sink. We can actually use the final residual network to find all the nodes that
are reachable from the source. Those nodes will be on the same side of the
cut as the source node. In order to find the edges to cut, we look at all the
connections between the nodes in this group and those that aren’t reachable
through the residual network.

Here you can see the final residual network (produced by adding flow along
the green path in the image on page 5). In green are the nodes reachable
from the source, and in blue are the nodes reachable from the sink. The red
line that divides them is the minimum cut, with a cost of 4.

7



8 Bipartite Matching

Another common application of max-flow algorithms is bipartite matching.
Suppose we are given two groups, A and B. Only certain pairs are possible,
for example A1 can be paired with B2 and B3, A3 can be paired with B2 and
B4, etc. Our goal is to find a matching between A and B so that we have
the maximum possible number of pairs. In order to do this, we can build a
flow network like this:

We added a source node that is connected to all the A nodes and a sink
node that is connected to all the B nodes. All the edges have a capacity of 1.
If we run a max-flow algorithm on this network, the flow will be equal to the
number of matched pairs, and it will be going along the edges corresponding
to the chosen pairs.

9 Problems

• Drainage Ditches (USACO Training 4.2)

• Telecowmunication (USACO Training 5.4)

• Cow Steeplechase (USACO 2011)

• Card Game (Codeforces)

• Bricks (Codeforces)

8

http://www.usaco.org/index.php?page=viewproblem2&cpid=93
https://codeforces.com/problemset/problem/808/F
https://codeforces.com/contest/1404/problem/E


10 References

• Algorithms by Robert Sedgewick and Kevin Wayne

• USACO Training Pages: Network Flow Algorithms

• Wikipedia - Ford-Fulkerson algorithm

• Previous lecture by Udbhav Muthakana

9

https://train.usaco.org
https://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm
https://activities.tjhsst.edu/sct/lectures/1920/2020_4_30_Flow.pdf

	Introduction
	Flow Networks
	The Max-Flow Problem
	Simple, Incorrect Solution

	Ford-Fulkerson Algorithm
	Augmenting Paths
	The Algorithm

	More Specific Algorithms
	Residual Network
	Edmonds-Karp Algorithm

	Other Max-Flow Algorithms
	Push-Relabel
	Linear Programming

	The Min-Cut Problem
	Maxflow-Mincut Theorem

	Bipartite Matching
	Problems
	References

