Advanced Binary Search

Nikhil Pesaladinne, Sauman Das

April 2021

1 Introduction

Most people already know the basic application of binary search which is to
find the position of a value in a sorted list. We will review the basic algorithm,
however, there are many other useful applications of this simple algorithm. Let’s
start by reviewing the basics.

2 Basic Binary Search

Binary search works by repeatedly dividing the search interval in half, eventually
arriving to the wanted value. You begin by the interval covering the entire array,
if the wanted value is lower than the middle of the interval, search the lower
half of the interval, and if it is higher, then search the upper half. We then
repeat this process until we arrive to the wanted value. If our interval’s size
ever reaches 0 however, we know that the wanted value does not exist in our
array.

while (target not found)
{
if (high < low)
x does not exist
mid = low + (high - low + 1)/2;
if (array [mid] < x)
low = mid + 1
if (array [mid] > x)
high = mid - 1
if (array[mid] == x)
x is at array[mid]

Binary Search Psuedocode

The above implementation is one that most people are familiar with. There
is another way to search through an array with the same average time complexity
often referred to by the name “jump searching”. This search involves setting

certain intervals to search through an array. When you overshoot your target
value, the interval size is halved so that a narrower search can be conducted.

Algorithm 1 Searching by Jumps
1: intervalSize <— hi — lo

2: while intervalSize > 0 do

3: while inBound(lo + intervalSize) and check(lo + intervalSize) do
4 lo < lo + intervalSize

5. end while
6
7
8

interval Size < intervalSize/2
: end while
: return lo

Using the jumps implementation can sometimes be shorter in terms of writ-
ing code. However, both are equally efficient and take O(log(n)) time.

Using this algorithm, we can easily and efficiently find whether an element
exists in an array. However, sometimes we may want more than just that.

3 Variations of Binary Search

3.1 Binary Search on a rotated Array

Problem: Given a sorted array of distinct elements, and the array is rotated
at an unknown position. Find minimum element in the array.

I r

4 first pulse

a " second pulse

(9
m required location m

We define | and r to be the left and right endpoints of our search interval
respectively. Let m be the middle position between [and r. How can we
compare m, [, and r to narrow our search space?

We start by noticing two 'pulses’ as shown in the image above. Since the
original array was sorted, and was only rotated at one location, we can guarantee
that there will be two unique ’pulses’.

We also know that the smallest element in the first pulse is greater than the
biggest element in the second pulse. So, if m is in the first pulse, a[m] > a[r],
and if m is in the second pulse, ajm] < a[l]. If a[m] > a[r] we can converge our
search interval to a[m + 1,7] and similarly a[l, m] if m lies in the second pulse.

int m;
int 1 = 0;
int r = n;
while(1 <= r)
{

if(1 == 1)

return 1;
m=1+ (r-1)/2;
if(Alm]l < A[r])

r = m;
else

1l = m+1;

Pseudocode

3.2 Using Binary Search to find the number of occur-
rences

Problem Given a sorted array with possible duplicate elements. Find number
of occurrences of input ‘key’ in log N time.

The idea here is to alter the binary search to find the leftmost and right
most occurrence of the given key. This is simple enough, we run two binary
searches, one for left and one for right. However, instead of stopping as soon
as we find an occurrence like in normal binary search, we keep looking until we
find the left/right most occurrence.

int getRight (int A[]l, int 1, int r, int key)
{
int m;
while(r - 1 > 1)
{
m=1+ (r - 1)/2;
if (Alm] <= key)
1l = m;
else
r = m;
}

return 1;

5 int getLeft(int A[], int 1, int r, int key)

int m;
while(r - 1 > 1)

2¢

m=1+ (r - 1)/2;
if (Alm] >= key)
r = m;
else
1l = m;
}

return r;

occurrences = getRight(A, 0, size, key) - getlLeft (A, -1, size-1,
key) + 1

Pseudocode

4 Searching in 2D Array

Lets assume that we have a sorted 2D array where the following condition is
satisfied: arr[i|[j] < arr[i+ k][j + k] ¥ k > 0. For example, this following array
would satisfy this condition.

1 3 5
7 12 13
15 17 22
23 24 25

Now, lets try to do a binary search on this array. Let’s say we are trying
to find the index of 17 in the array. The easiest and most intuitive way to
accomplish this would be to convert the multi-dimensional array to a basic 1D
array, and because of the condition mentioned earlier, the array would also
be sorted. The time complexity of this algorithm would be O(log(mn)) or
O(log(m) + log(n)) for a grid with dimensions m X n.

There are other ways to do this that do not involve typecasting the 2D array
to a single dimension. The other possible option can be the following:

1. Do a binary search to find which row the value belongs to. Binary search
based off of whether the target value falls in the range of the bounds of a
given row.

2. Once the row is identified, take the single row and treat it as a 1D array.
Now, do a simple binary search to check whether the target value exists.

Again, this algorithm requires the same time complexity because the first
step is O(logm) and the second step is O(logn), so the total complexity is
O(log(m) + log(n)).

5 Problems

Note: These problems do not necessarily contain the applications of binary
search we went through in this lecture. They contain the regular binary search

concept as explained in Section [2} however, understanding how to apply the
search algorithm to solve the problem can be quite tricky.

Problem 1. Sabotage| (USACO 2014 March, Gold)
Problem 2. Greedy Gift Takers (USACO 2017 December, Platinum)

http://usaco.org/index.php?page=viewproblem2&cpid=419
http://www.usaco.org/index.php?page=viewproblem2&cpid=770

	Introduction
	Basic Binary Search
	Variations of Binary Search
	Binary Search on a rotated Array
	Using Binary Search to find the number of occurrences

	Searching in 2D Array
	Problems

