
Range Queries

Kevin Shan∗

December 2022

1 Introduction

Range Query data structures enable us to make range queries in logarithmic time, compared to the
linear complexity of naive solutions. They also give point update or range update capabilities, in
logarithmic time as well. Range Query data structures are extremely powerful and are commonly
used in Gold and Platinum USACO problems.

2 Binary Indexed Trees Introduction

A Binary Indexed Tree (BIT), also known as a Fenwick Tree, is used for range sums (usually).
Namely, a BIT can do element updates and prefix sums (a[1] + a[2] + ...+ a[i]; we one-index BITs for
implementation-specific reasons) in O(log n). This is a tradeoff between a O(n) update/O(1) query
prefix-sum solution and the O(1) update/O(n) query naive solution.

BITs are very useful, especially for their simple implementation.

3 BITs

1 4 6 -2 3 -10 2 2 0 12 4 1 -1 6 5 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1: A sample array.

BITs rely on the idea that an integer can be decomposed into powers of two. Given an index i, we
can find these powers of two by writing i in binary. Then, we keep turning off the lowest bit until we
reach zero. Say we want to find the prefix sum a[1] + a[2] + ...+ a[14]:

14→ 1110→ 1100→ 1000→ 0

How do we find the prefix sum with this?
Say we just went from 1110 → 1100. We just jumped from index 14 → 12. We can add the

elements with indices 13 and 14 to a running sum, then recur on 12:

1110 (14) −−−−−−−−−→
add a[13]+a[14]

1100 (12) −−−−−−−−−−−→
add a[9]+...+a[12]

1000 (8) −−−−−−−−−−→
add a[1]+...+a[8]

0

∗Based on Charles Zhao’s Segment Tree Lecture (2016) and Justin Zhang’s Binary Indexed Trees Lecture (2017)
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Notice that every “step” (1110, 1100, and 1000), there’s a unique range of indices denoted.
That is, 1110 uniquely denotes indices 1101 and 1110, or all numbers between the 1110 and 1 +
(1110 with the bottom bit removed). So we can map every number to a range of indices, and store
the sum beforehand; 1110 stores a[13] + a[14]. See the illustration below.

3.1 Query

We discussed query above. But how do we find the lowest bit?
Taking advantage of the two’s complement system (−1 = 1...11112,−2 = 1...11102 and so on), we

can do this very easily. Say we’re using 14 = 11102. −14 = 00102 (with a bunch of ones in front). If
we bitwise AND these two together, we get only the lowest bit set. This holds true in a general sense:
let i = (a1b)2, where a and b are parts of the binary number, and the one represents the lowest bit
set. Then the negative is as follows: −i = (̃a1b)2 + 1 = ã0̃ b+ 1. But b must consist of only zeros,
since it’s after the lowest set bit. Thus, we get −i = (̃ a1b)2. Bitwise AND-ing with i, we clearly see
that only the lowest bit is set.

A C++ implementation is shown below.

int query ( int i ) {
int ans = 0 ;
for ( ; i >0; i−=(i & − i ) )

ans += a [ i ] ;
return ans ;

}

Clearly, to do range queries, we can subtract in the same way we do with regular prefix sums:

int range ( int i , int j ) {
return query ( j ) − ( i>1?query ( i −1 ) : 0 ) ;

}

3.2 Update

To update (add a value v) at a given index i, we want to add the value to all segments “above” i.
Here I mean “above” in the sense of the diagram above – all segments that contain i.

Let’s take 9. The sequence for segments “above” 9 is:

9 (1001)→ 10 (1010)→ 12 (1100)→ 16(10000).

Notice that we’re simply adding the lowest bit every time (why?). Then for each index we visit,
we add v to the value at this segment. Thus, the implementation is quite similar to query.
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int update ( int i , int v ) {
for ( ; i<=N; i += ( i & − i ) )

a [ i ] += v ;
}

Note that for both update and query, we’re only going through each bit once. Thus, the complexity
is O(log n).

3.2.1 Range Updates

Range updates are a bit more involved, but can also be done in O(log n). The idea is to keep two
BITs.

Let’s say we want to find a given prefix sum to index i (to find the range sum we can still subtract
the prefix sums). To do this, we find all ranges that begin before i. Then, the answer is:∑

ranges

max(i, r) ∗ v − (l − 1) ∗ v

where r is the right endpoint of a given range, l is the left, and v is the value. To calculate this,
we can use one BIT to calculate the i∗ v parts and the other to calculate the r ∗ v and (l−1)∗ v parts.

Specifically, here’s how we’d update:

1. BIT1.update(l, v)

2. BIT1.update(r+1, -v)

3. BIT2.update(l, (l-1)*v)

4. BIT2.update(r+1, -r*v)

To query a[1] + ... + a[w]: BIT1.query(w)*w - BIT2.query(w). BIT1 handles cases where w falls
within a range update; BIT2 handles the endpoints of the range updates.

4 Problems

1. You’re given n (1 ≤ n ≤ 105) horizontal line segments, each with inclusive endpoints (x1, y) and
(x2, y) where −109 ≤ x1 ≤ x2 ≤ 109. Each line segment has a value v (−109 ≤ v ≤ 109).

Answer each of q (1 ≤ q ≤ 105) queries. Each query is of the form x′, a, b, and asks you to
sum the values of the a-th to the b-th (sorted by increasing y) line segments at the vertical line
x = x′.

2. (Brian Dean, 2012) FJ has set up a cow race with N (1 ≤ N ≤ 100, 000) cows running L laps
around a circular track of length C (1 ≤ L,C ≤ 25, 000). The cows all start at the same point
on the track and run at different speeds, with the race ending when the fastest cow has run the
total distance of L∗C. FJ notices several occurrences of one cow overtaking another. Count the
total number of crossing events during the entire race.

3. (Brian Dean, 2011) Farmer John has lined up his N (1 ≤ N ≤ 100, 000) cows each with height
Hi (1 ≤ Hi ≤ 1, 000, 000, 000) to take a picture of a contiguous subsequence of the cows, such
that the median height is at least a certain threshold X (1 ≤ X ≤ 1, 000, 000, 000). Count the
number of possible subsequences.
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4. (SPOJ BRCKTS) Given a bracket expression of length N (1 ≤ N ≤ 30, 000), process M opera-
tions. There are two types of operations, a replacement, which changes the i-th bracket into its
opposite, and a check, which determines whether a bracket expression is correct.

5 Segment Trees Introduction

A segment tree is a data structure for storing intervals, or segments. Segment trees can efficiently
answer dynamic range queries. We will use a segment tree to solve the Range Minimum Query
(RMQ) problem, which is the problem of finding the minimum element in an array within a given
range i to j. Other range queries include the maximum within a range or the sum of a range. A
naive solution to RMQ is to iterate from index i to j, which takes O(n) per query. This is too slow
if n is large or if there are many queries. Another solution is to build a 2D matrix containing every
single RMQ, which would be able to answer queries in O(1) time. However, it would take O(n2) time
to build this matrix and O(n2) space to store the matrix. Therefore, neither of these solutions scales
well. Segment trees solve the problems of both time and space.

6 Constructing the Tree

A segment tree is a balanced binary tree in which each leaf represents an element in the array. The
root of the tree represents segment [0, n − 1], and for each segment[l, r] represented by the node at
index p, the left child represents the segment [l, (l + r)/2] and the right child represents the segment
[(l + r)/2 + 1, r]. In the case of RMQ, ”represents” means the value of the node is the minimum of
the segment it represents. For example, for the array [−1, 3, 4, 0, 2, 1], the tree would look as follows:

-1

-1

-1

-1 3

4

0

0

0 2

1

Constructing this tree takes O(n) time and O(n) space. In the pseudocode below, we build the
tree recursively. The tree is represented as an array st where index 1 is the root of the tree and the
left and right children of index p are indices 2 × p and (2 × p) + 1, respectively. l and r are the left
and right bounds of the current segment, respectively.

Algorithm 1 Segment Tree Construction

function Build(p, l, r)
if l = r then

st[p]← A[l]
else

pl← 2× p
pr ← 2× p+ 1
Build(pl, l, (l + r)/2)
Build(pr, (l + r)/2, r)
return min(st[pl], st[pr])
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7 Solving Queries

There are three cases that we must consider when traversing a segment tree: when part of the segment
represented by the node is within the query; when the segment is completely within the query; and
when the segment is completely outside of the query. If part of the segment is within the query, we
must check both of the node’s children. If the segment is completely within the query, we return
the node’s value, which is the minimum of the segment it represents. If the segment is completely
outside of the query, we return some very large number. In the pseudocode below, we traverse the
tree recursively. With the segment tree built, solving an RMQ takes O(log n) time. This is because
segment trees allow us to avoid traversing unrelated parts of the tree. In the worst case, in which
only part of every segment we reach is within the query, we traverse two root-to-leaf paths, taking
O(2× log n) = O(log n) time.

Algorithm 2 Range Minimum Query Using a Segment Tree

function RMQ(p, l, r, i, j)
if i > r or j < l then

return ∞
if l >= i & r <= j then

return st[p]

pl← 2× p
pr ← 2× p+ 1
minl← RMQ(pl, l, (l + r)/2, i, j)
minr ← RMQ(pr, (l + r)/2 + 1, r, i, j)
return min(minl,minr)

8 Modifying the Tree

Remember that we said segment trees can efficiently answer dynamic range queries. This means that
if the array on which we are performing RMQs changes, we can efficiently update the segment tree.
If an element in the array changes, we start from the leaf node representing that element and move
up the tree, updating nodes as we go. Thus, this takes O(log n) time.
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