
2022-2023 Introductory Math

TJHSST SCT Officers

September 2022

1 Introduction

Many recent computing contests have involved more math than before. Having
a basic foundation for mathematics is important for tackling many algorithmic
problems. In this lecture we’ll cover some basic math-based concepts.

2 Combinatorics

2.1 Basic Principles

Many competitive programming problems involve counting possible arrange-
ments or computing probabilities. In these situations, finding the correct al-
gorithm quickly is important. First, let’s review the basics of combinatorics
principles, and then work through a few simple problems.

1. We can arrange n distinct objects in n! different ways.

2. From n distinct objects, we can pick n!
(n−r)! arrangements of r objects

where order matters. Arrangements like these (where the order of the
objects is important) are called permutations.

3. We can pick n!
r!(n−r)! arrangements of r objects where order does not mat-

ter. These arrangements are called combinations.

4. We can arrange n distinct objects in r distinct subsets in rn different ways.

5. We can put n identical objects into r labeled boxes in
(
n+k−1

n

)
ways.

6. If there are many incorrect cases in the collection of all possible cases, we
can find number of correct cases by subtracting the number of incorrect
cases from the total number of cases.

2.2 Independent vs. Dependent

When two events are independent of each other, the outcome of the first event
will not affect the outcome of the second. Likewise, as the name suggests, when
two events are dependent on one another, the outcome of the first event will
affect the outcome of the second event.

1



2.3 Examples

Recognizing when to apply the correct principles comes with practice. Here are
some practice problems that outline basic combinatorics strategies.

1. (UVa 11401 - Triangle Counting): You are given n rods of length 1, 2, ..., n
where 1 ≤ n ≤ 106. You have to pick any 3 of them and build a triangle.
How many distinct triangles can you make? Note that two triangles will
be considered different if they have at least 1 pair of arms with different
lengths. (Hint: consider answers for multiple small n)

Solution: We recognize that the number of triangles that can be formed
with longest side n is f(n) = (n − 3) + (n − 5) + (n − 7)... for as long as
each term is positive, and f(n) + f(n− 1) =

(
n−2
2

)
. This observation can

be used to find a recurrence relation for the total number of triangles that
can be formed.

2. (USACO 2019 Gold - Cow Poetry): Unbeknownst to Farmer John, Bessie
is quite the patron of the arts! Most recently, she has begun studying many
of the great poets, and now, she wants to try writing some poetry of her
own. Bessie knows N words (1 ≤ N ≤ 5000), and she wants to arrange
them into poems. Bessie has determined the length, in syllables, of each
of her words, and she has also assigned them into ”rhyme classes”. Every
word rhymes only with other words in the same rhyme class. Bessie’s
poems each include M lines (1 ≤ M ≤ 105), and each line must consist
of K syllables (1 ≤ K ≤ 5000). Moreover, Bessie’s poetry must adhere to
a specific rhyme scheme. Bessie would like to know how many different
poems she can write that satisfy the given constraints.

Solution: Let us define the frequency of each rhyme class to be fc and
the number of ways to complete a line with K syllables that ends with
a rhyme as wn. We can then write the number of ways to form lines for
that particular rhyme class as

numrhymes∑
n=1

wfi
n

From here, we see that the overall answer is the combined product of this
summation for each rhyme class. To find the number of ways to form a
line for a particular rhyme, we can use dynamic programming. For the
number of syllables in each word ws, we see that dp[ws + i] += dp[i].
When ws + i is equal to K, it represents a new way to form a line that
ends in the rhyme class of that word.

2



3 Binomial Theorem

Expanding (x + y)n can get tedious, especially once n gets larger and drawing
out Pascal’s triangle takes too much time. To simplify this process, there exists
the binomial theorem:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk = xn +

(
n

1

)
xn−1y + ...+

(
n

n− 1

)
xyn−1 + yn

This theorem becomes very useful when you only need to find one term out of
an otherwise expansive list of terms.

4 Number Theory

Modular Arithmetic works with remainders instead of integers. For example,

9 mod 5 = 4

since the remainder of 9 when divided by 5 is 4. In contests, you’ll often see
modular arithmetic used to avoid dealing with large numbers that overflow.

4.1 Modular Arithmetic Properties

Some common properties in modular arithmetic:

(a+ b) mod m = (a mod m+ b mod m) mod m

(a− b) mod m = (a mod m− b mod m) mod m

(a · b) (mod m) = ((a mod m) · (b mod m)) mod m

ab mod m = (a mod m)b mod m

4.2 Tips & Tricks

• If we’re taking the modulo of some set of numbers over and over again(i.e
powers of numbers), it may be faster to pre-calculate the modulo of each
of these numbers beforehand.

• Since the % operator has a much higher constant factor compared to more
elementary operators like addition or subtraction, always use addition and
subtraction when you have the choice. For example,

9 mod 5 = 9− 5.

3



• Take the modulo of each number before performing operations to prevent
overflow.

• While debugging, if you come across a negative number it almost always
means overflow.

4.3 Modular Inverse

Dividing can be very difficult while in some mod n. For example,

(9/3) mod 5 ̸= ((9 mod 5)/(3 mod 5)) mod 5

Luckily, using modular inverses, we can safely divide numbers without worrying
about mistakes during division. The modular inverse of a number is equivalent
to the reciprocal but in a certain mod.

a/b mod m = a ∗ i mod m

where i is the modular inverse of b. The modular inverse of b mod m, is equiv-
alent to bm−2 mod m since by Fermat’s:

bm−1 mod m ≡ 1 mod m

if m is prime. Finding bm−2 is a much simpler task which can be solved using
binary exponentation or pre-calculating the powers of a number as mentioned
before.

4.4 Example Problems

Calculate n binomial coefficients modulo 109 + 7. A binomial coefficient(
a
b

)
can be calculated using the formula a!

b!(a−b)! . We assume that a and b are

integers and 0 ≤ b ≤ a.

4


