
Bitwise Operators and Bitmasking

Taein Kim

September 2022

1 Bit Representation of Numbers

Often, in competitive programming, it may be useful to represent numbers as base 2 before performing calcula-
tions. This is called the ”bitwise representation” of a number; these representations can be manipulated faster,
and have a lot of useful operators and applications.

1.1 The Basics

If we’re going to use bitwise operators in our algorithms, we must first understand how base 2 works. Unlike
base 10, the standard base, numbers in each digit are represented as powers of two. For example, the bitwise
representation of 2 equals 10, and the representation of 9 equals 1001.

1.2 Other Applications

Integers in base 10 are not the only data structure that can be manipulated into a bitwise representation–
we can also do the same with sets and subsets of integers. For example, say we have a subset of the first 8
integers: {1, 3, 4, 8}. We can represent sum of each number in the set raised to the power of 2 bitwise, and get
28 + 24 + 23 + 21 = 100011010.

2 Bitwise Operators

Bitwise operators are operations performed on one or two binary numbers. These operations are important
because they all run in constant-time, and will cut down your program runtime significantly under the right
circumstances. Especially with manipulation with sets, which tend to take above O(n) time, turning the set
into a binary number and using bitwise operators will be much faster.
Here are the most basic operators:

2.1 Two-number Bitwise Operators

1. AND (&): Returns 1 if both numbers in a corresponding digit are 1, otherwise returns 0.

2. OR (|): Returns 1 if either number in a corresponding digit is 1, otherwise returns 0.

3. XOR (∧): Returns 1 if one number in a corresponding digit is 1 and the other 0; otherwise returns 0.

2.2 One-number Bitwise Operators

1. NOT (∼): Flips every 1 and 0 in a binary number.

2. Right Shift (>>): Shifts every bit of a number one right, filling voids on the left with 0. Similar to dividing
the base-10 representation of the number by 2.

3. Left Shift (<<): Shifts every bit of a number one left, filling voids on the right with 0. Similar to
multiplying the base-10 representation of the number by 2.

1

3 Applications and Problems

3.1 Exercises

Find each of the following in base 10:

1. 5 & 10

2. 25 | 33

3. 50 >> 2

4. ∼ 36

3.2 Simple Applications

Find a bitwise solution for these simple programming problems:

1. Determine whether a number is even or odd.

2. Given two sets of integers, find whether or not the two sets share an element.

4 Addition Using Bitwise Operators, Intro to Bitmasking

Through a clever manipulation of multiple different bitwise operators, we can create our typical addition oper-
ation.

4.1 Addition

Try to use three of the given six operations to add one binary number to another. Hint: you’ll need two separate
operations to both determine the sum of two given digits and determine whether anything will carry over to
the next. Try manipulating one of the two numbers to keep track of all the numbers being carried over until it
reaches zero.

4.2 The Solution

First, we will keep track of all digits that carry over by the AND function. Then, we use the XOR function to
get the initial sum without carrying over; lastly, we repeat the same process, adding the results from AND and
XOR, until the results from the AND process reaches zero and there is nothing to carry over.

5 Bitmasking

A bitmask is a ”mask” that we can apply on a binary number in order to check elements or perform operations
on a binary number. A bitmask is given as the same form as the number we are applying the mask to. Some
common tasks we perform using a bitmask include checking whether an element is in a set or iterating through
all subsets of a set. Note that a bitmask can be inverted using the NOT function, just as a regular binary
number can.

5.1 Simple Manipulation

Try to find a bitmask-bitwise operator pair that can add, remove, and check for the ith element in a set. Suppose
you’re working with a set S and a bitmask B. Note that both the bitmask and the set are zero-indexed from
the left.

2

5.2 Solution

1. Adding: S OR 1<<i

2. Removing: S OR ∼(1<<i)

3. Checking: Check whether S AND 1<<i != 0

6 Bitmask Challenge Problems

Try to find algorithms that involve for loops and bitwise operations for the challenges below!

6.1 Iteration through all subsets of a set

Here, given a bitmask M, we want to iterate through all submasks of M that only include bits that M includes.

6.2 Iteration through all submasks of all subsets of a set

Here, we want to first iterate through all bitmasks, which is a fixed number; however, we also want to iterate
through the submasks of each bitmask we visit.

6.3 Solutions

1. Challenge 1:

i n t s = m;
whi l e (s > 0) {

#add s
s = (s−1) & m;

}

Here, a placeholder s begins exactly at m. Afterwards, for each iteration, we subtract 1 from s; this will
result in every bit to the right of the last 1-bit of the previous mask being converted to 1. Then, we simply
get rid of all of the unnecessary 1’s by performing an AND with the original bitmask M, resulting in the
next smallest bitmask that is a submask of M.

2. Challenge 2:

f o r (i n t m=0; m<(1<<n) ; ++m)
f o r (i n t s=m; s ; s=(s−1)&m)

#add m and i t s submask s

Notice how the same algorithm above is executed for each mask of length n. For each bit, the index can
be included in neither m nor s, m but not s, or both m and s. Thus, the algorithm as a whole will execute
in O(3n) time.

7 Math and Bitmasks

As an ending note, bitmasks and bitwise operators can also be used to find whether two numbers are relatively
prime. For example, if two numbers AND to zero in base two, we can tell that they are relatively prime.
Similarly, the OR function is used as a least common multiple, and iterating through bits and submasks is
equivalent to iterating through prime and all divisors.

3

	Bit Representation of Numbers
	The Basics
	Other Applications

	Bitwise Operators
	Two-number Bitwise Operators
	One-number Bitwise Operators

	Applications and Problems
	Exercises
	Simple Applications

	Addition Using Bitwise Operators, Intro to Bitmasking
	Addition
	The Solution

	Bitmasking
	Simple Manipulation
	Solution

	Bitmask Challenge Problems
	Iteration through all subsets of a set
	Iteration through all submasks of all subsets of a set
	Solutions

	Math and Bitmasks

