
Union Find and MST

Joshua Zhang, with contributions from Neeyanth Kopparapu

November 2022

1 Introduction

Union find, also known as disjoint set union, is a relatively simple yet useful algorithm for the Gold
and Platinum divisions. Union find problems are usually tree or graph problems, but it can be applied
to a variety of situations.

Given labeled sets containing distinct elements, union find consists of two functions:

• find(a) returns the label of the set that a belonged to.

• union(a, b) combines sets a and b, meaning all elements in set b now belong to set a, and set b
effectively disappears.

2 Union Find

2.1 Naive Solutions

If we maintain the sets as lists, we can quickly come up with this naive solution:

• find(a) search all of the sets for the element, O(N) time.

• union(a, b) combines two sets, O(N) time.

Storing the set each element belongs to, we can achieve better performance:

• find(a) look up which set a belongs to, O(1) time.

• union(a, b) change the stored table and combine sets, O(N) time.

These all work, but usually we will to be more efficient than O(N) in order to pass the test cases.

2.2 Pointer Representations

In order to optimize further, we need to think about the problem a bit differently. Let’s represent the
sets as a forest of trees. When we do find, we are looking for which tree a node belongs to, and when
we do union, we are combining trees.

We will represent our trees as an array of pointers, so array[i] = parent of i, where i is a node in the
graph. If i has no parents, then array[i] = −1.

Under this representation, Union find is as follows:

1



Figure 1: Example Trees and Pointer Representation

• find(a) find the pointer for a, traverse up the tree until we reach the root, return the root, which
is the label for the tree. Since our tree can have any height, O(N) time.

• union(a, b) connect node find(b) to find(a), O(N) time due to calling find.

2.3 Path Compression

If we traversing up a tree to get the the root during (find) multiple times, we are probably wasting
time going up nodes we’ve already done. We can optimize our program by flattening the path. After
we run find(a), we can set the node that a points to to find(a). If we build our trees from scratch
using find and union, both will actually have O(log(N)) worst case performance.

2.4 Union By Rank

Another optimization we can do is restricting the height of our trees. We can do this by always adding
onto the taller tree when union is called. Since path compression can mess with how tall our trees are,
we should instead use rank. Rank starts off at the height of our initial tree. When two trees with the
same rank are joined, the resulting rank is one higher. Otherwise, the rank is just the higher of the
two. Doing union by rank guarantees that the height of our trees is no larger than log(N), making
union and find both O(log(N)). However, there are occasionally cases where we may want to keep
track of the labels as we join trees. In these cases, we should not use union rank.

Using both optimizations turns the runtime of both operations to O(α(V )), where α(V ) is the inverse
Ackerman function. For all intensive purposes α(V ) ≤ 5, so this makes is basically constant. However,
most of the time you can get away with using just one.

3 Minimum Spanning Tree

3.1 Introduction

The minimum spanning tree is a common application of union find, and also a topic in it’s own right,
appearing in both the Gold and Platinum divisions of USACO.

2



The problem is as follows: given a connected, weighted, and undirected graph, what is a way to
connect all the nodes such that the sum of the weights of the edges used is as small as possible?

3.2 Kruskal’s Algorithm

The idea of Kruskal’s Algorithm is to sort the edges, and then go through them from smallest to
biggest. Whenever we encounter an edge that would add a node to our tree, we use it to connect that
edge to our tree. We skip any edges that would add a node already in our tree. The algorithm relies
on union find to efficiently check whether or not nodes are in the tree. Each node starts off as its own
set, and gradually gets added to the tree. If find(a) = find(b), we know that they are both in the tree.

The complexity is thus O(E log E). There is also Prim’s algorithm, which is conceptually similar but
reverses the role of nodes and edges. We won’t cover that, since it runs in O(N2) or O(Elog(N)) time,
and very rarely is Kruskal’s not a viable alternative.

4 Problems

• USACO 2014 March Contest, Silver Problem 1. Watering the Fields

• USACO 2011 December Contest, Gold Division Problem 2. Simplifying the Farm

• USACO 2014 January Contest, Gold Problem 3. Ski Course Rating

• USACO 2016 December Contest, Gold Problem 1. Moocast

• USACO 2020 January Contest, Platinum Division Problem 1. Cave Paintings

3


	Introduction
	Union Find
	Naive Solutions
	Pointer Representations
	Path Compression
	Union By Rank

	Minimum Spanning Tree
	Introduction
	Kruskal's Algorithm

	Problems

