
Least Common Ancestor

Kevin Shan

December 2022

1 Introduction

The Least Common Ancestor of two nodes a and b in a tree is defined as the lowest node that contains both
node a and node b in its subtree.

This operation, when done quickly, is very useful for problems that involve querying on trees, or dynamic
programming on trees.

1

2 3 4

5 6

For example, in the given tree, LCA(5, 6) = 4.

A naive solution to the LCA problem would be to perform a DFS from node a to node b, and return the node
with the highest depth on the path from a to b. While this solution is not ideal (O(M +N)), it does provide a
useful observation: that the LCA between two nodes on a tree always lies on the path between a and b.

We aim to find a solution that falls under O(NlogN) time to set up, and O(logN) to compute one query.

2 Tree Flattening (Euler Tour)

We will perform a Euler Tour on our tree in order to ”flatten” the tree to make it easier to process.

A Euler tour involves traversing through a tree via DFS, and keeping track of the instance you first enter and
leave a node. Learn more here: https://en.wikipedia.org/wiki/Euler_tour_technique

A Euler Tour gives us some nice properties that we can work with:

1. Given the start and end time (cs[i], ct[i]) of a node i, all nodes x with cs[x] > cs[i] and ct[x] < ct[i] are in
the subtree of i.

2. The start and end time of two nodes will either be contained within each other, or not overlap. This aligns
with the structure of a tree.

1

https://en.wikipedia.org/wiki/Euler_tour_technique


We will see some additional modifications to the Euler Tour later on.

vector<int> adj[N];

int be[N], end[N], up[N][logN];

int cnt = 1;

void dfs(int x, int p){

be[x] = cnt++;

up[x][0] = p;

for(int i=1; i<=l; i++) up[x][i] =

up[up[x][i-1]][i-1];

for(int i:adj[x]){

if(i!=p)

dfs(i, x);

}

en[x] = cnt;

}

3 LCA with Range Minimum Queries

3.1 Range Minimum Queries

RMQs can be performed with some data structure such as a Segment Tree, but there is also a simpler implemen-
tation of RMQs that has a query complexity time of O(1). Learn more here: https://en.wikipedia.org/wiki/
Range_minimum_query#Solution_using_constant_time_after_linearithmic_space_pre-computation

This data structure can be summarized as follows: Precompute all intervals of size 20, 21, 22...2l such that
l = log2(N). We represent dp[i][j] as the minimum on the range [i, i + 2j ]. Precompuation takes O(NlogN).
We can actually query in linear time: note that, due to the nature of minimizing functions, the minimum on
the range [l, r] is the same as the mininimum of the minimums of two overlapping ranges, [l, r1] and [l1, r] such
that r1 ≤ r and l1 ≥ l. Consequently, when answering a query for the minimum of [l, r], when s = r− l+1 and
g = ⌊log2 s⌋, we simply take min(dp[l][g], dp[r − 2g][g]) as the answer. Note that these two ranges overlap, and
consequently, yield us the correct value.

3.2 Euler Tour Modification

We can modify our Euler Tour to fit the demands for the LCA problem. Instead of keeping track of just the
start and end times of each node, we also include each time our DFS ”returns” to the node.

1

2

3 4

5

6 7

When a DFS is performed on this graph, the nodes will be traversed in the same order as their numbering.
When appending each visitation of a node to an array as demonstrated by the code below, we end up with the
following:

vector<int> v;

2

https://en.wikipedia.org/wiki/Range_minimum_query#Solution_using_constant_time_after_linearithmic_space_pre-computation
https://en.wikipedia.org/wiki/Range_minimum_query#Solution_using_constant_time_after_linearithmic_space_pre-computation


vector<int> adj[N];

void dfs(int x, int p){

v.pb(x);

for(int a:adj[x]){

if(a==p) continue

dfs(a, x);

v.pb(x);

}

}

// v = {1, 2, 3, 2, 4, 2, 1, 5, 6, 5, 7, 5, 1}

Doing this yields some characteristics not seen before: When querying the path between two nodes, all nodes
that occur between the index of the first time node a occurs, and the index of the first time node b occurs, are
located on the subtree of the LCA(a, b).

Consequently, the algorithm for finding LCA(a, b) is as follows: Given the modified Euler Tour of a tree, when
querying the LCA two nodes, we just need to find the node with the lowest depth on the subarray from the
cs[a] to cs[b], inclusive. When implemented with an RMQ, the query time complexity for LCA(a, b) is constant.

4 LCA with Binary Lifting

There is another, more intuitive solution to LCA that employs Binary Lifting. Binary Lifting the the process
of traversing vertically on a tree in incremental distances of powers of two. The critical observation is that any
distance can be reached in under log(N) steps.

5 Euler Tour

For this version of LCA, the standard Euler Tour mentioned previously will be used, where we find cs[i] and
ct[i] for each node i. We will also be using one particular characteristic of Euler Tours, where we found that
given the start and end time (cs[i], ct[i]) of a node i, all nodes x with cs[x] > cs[i] and ct[x] < ct[i] are in the
subtree of i.

5.1 Checking if Nodes are Ancestors

Before we review the LCA algorithm, first we need to find how to check if a node is an ancestor of another.
With our flattened tree, we can create the following condition: Given node a and b, if cs[a] < cs[b] and
ct[a] > ct[b], then node a is an ancestor of node b.

5.2 Binary Lifting

We need to find the lowest node that is an ancestor of both nodes a and b. To do this, we locate the highest
node that is not an ancestor of both nodes, and find the parent of such a node. We can do this through Binary
Lifting, where we move up in increments of powers of two.

However, to calculate these instances, we will need to precompute the jumps. We can accomplish this through
dynamic programming (dp). For each node i, we will precompute all of dp[i][b], where dp[i][b] is the ancestor of
node i that is 2b layers of depth above it. Because of the structure of trees, only one of these exists.

Assume we have computed dp[i][b] for all of dp[j][b] such that j is an ancestor of i. Starting from b = 0, we can
first set dp[i][0] equal to the parent of i, which we call p. From there, we can assign dp[i][1] = dp[p][0]. Then, we
can assign dp[i][2] = dp[dp[i][1]][1]. We continue this for all values of b, with the following recurrence relation:

dp[i][b] = dp[dp[i][b− 1]][b− 1].

Below is a diagram illustrating visually how this transition functions:

3



Why is this useful? Assume we know that LCA(a, b) = x, and the difference in depth between x and node b is
some value. If we were to represent this difference in depth in binary, each bit in the bitmask representation
corresponds to a jump that we have already precalculated.

With this established, we can easily find the LCA of two nodes: Set node x to be the node are searching on,
and initiate it arbitrarily to a. We will iterate b from ⌊log2(N)⌋ to 0, where at each step, we check if dp[x][b]
is an ancestor of b. If it is not, then we set x = dp[x][b]. Otherwise, continue to the next iteration. Doing so
allows us to bring x closer to LCA(a, b), in a maximum of ⌊log2(N)⌋ steps.

The code for an LCA implementation can be found below:

int n;

vector<int> adj[MAXN];

int be[MAXN];

int en[MAXN];

int cnt = 1;

int up[MAXN][100];

int l; //max power of 2 (log2 of n)

void dfs(int x, int p){

be[x] = cnt++;

up[x][0] = p;

for(int i=1; i<=l; i++) up[x][i] = up[up[x][i-1]][i-1];

for(int i:adj[x]){

if(i!=p) dfs(i, x);

}

en[x] = cnt;

}

bool anc(int u, int v){

return be[u]<=be[v] && en[u]>=en[v];

}

int lca(int u, int v){

if (anc(u, v)) return u;

if (anc(v, u)) return v;

for(int i = l; i>=0; i--){

if(!anc(up[u][i], v))

u = up[u][i];

}

return up[u][0];

}

4


	Introduction
	Tree Flattening (Euler Tour)
	LCA with Range Minimum Queries
	Range Minimum Queries
	Euler Tour Modification

	LCA with Binary Lifting
	Euler Tour
	Checking if Nodes are Ancestors
	Binary Lifting


