
Introduction to Contest Programming

Srinidhi Krishnamurthy and Mihir Patel

September 17, 2017

1 Introduction

Welcome to competitive programming! This lecture is going to detail some of the basic ideas in contest programming
and is going to introduce complete beginners to the subject. We go over the various competitions that Senior
Computer Team does and detail computational complexity. Typically, contest programs reward people for coming
up with fast, space-efficient algorithms quickly and accurately.

2 USACO

USACO (the USA Computing Olympiad), is the contest that we focus on the most in Senior Computer Team. It
is an individual contest and lasts for typically four hours on select weekends. You can log in at anytime on this
select weekend and take the contest for your division. The competitions have a max score of 1000 points.

2.1 The Division System

USACO runs on the Division System where contestants are broken up into four division: Bronze, Silver, Gold,
and Platinum. Every competitor initially starts out at Bronze and then moves up through the ranks determined
by a cutoff. If a contestant is able to score a perfect 1000 during the contest, they are given the opportunity to
”in-contest promote” and jump straight to the next division within that weekend. Because of this, we have seen
classmates go from Bronze to Platinum in one contest (though it is quite rare). Here are the official descriptions
for each of the divisions:

• Bronze - Bronze-level problems are designed to be accessible and engaging for students who have learned
how to program but who do not yet have any formal algorithmic training, although they are still designed to
require creativity and ”algorithmic thinking”. Compared to the ”old” bronze division, problems in the new
bronze division are planned to be much more accessible to novice students.

• Silver - Students in the silver division begin to encounter fundamental algorithms, such as recursive searching,
”sort and scan” type algorithms, basic data structures, simple greedy algorithms, and others. Compared to
the ”old” silver division, problems in the new silver division are planned to be roughly between the old bronze
and silver divisions in difficulty.

• Gold - The gold division requires knowledge of more advanced algorithmic concepts, such as dynamic program-
ming, various graph algorithms, and more advanced data structures. Compared to the ”old” gold division,
problems in the new gold division are planned to be roughly between the old silver and gold divisions in terms
of difficulty.

• Platinum - Platinum problems are quite challenging, requiring clever combinations of sophisticated algorith-
mic ideas. These problems are intended to challenge even the very top competitors.

USACO uses files for input and output (which is not really the standard). Most other competitions and platforms
(such as CodeForces) use standard input and output (reading straight from System.in in Java or with the cin and
cout objects in C++’s iostream). In Java, you can use the Scanner and File objects for file input and output
and PrintWriter for file output. You can find these in java.util.∗. Furthermore, if you want to get an extra
speed boost in your programs, you can try using BufferedReader or BufferedWriter. In C++, you can use the
ofstream and ifstream classes in fstream.

1



3 Computational Complexity

The computational complexity of an algorithm is a measure of its efficiency. It is the amount of time (time
complexity) or space (space complexity) an algorithm takes to run as a function of the size of the input. More
specifically, we use big-O notation to formalize this. We typically only consider the highest order/most dominant
function within the computational complexity. In programming contests, we want a program to have a good enough
complexity so that it can handle all of the specified input sizes. If a program gets accepted, it typically means that
it has the intended computational complexity. If a program gets the ”time limit exceeded” error, it means that the
code did not run in the time allotted. As a good rule of thumb, most modern computers and processors can do
108 operations per second. If you input the maximum input size into your computational complexity function, it
should not exceed 108.

4 Common Complexities

• O(1) - constant

• O(log n) - logarithmic

• O(n) - linear

• O(n2) - quadratic

• O(n3) - cubic

• O(2n) - exponential

5 Cheat Sheet

In USACO, for each test case, you are typically given 1 second for C++ and 2 seconds for Java. Your programs
are run on machines that do approximately 108 operations per second. Based on the input size bounds given to
you, here are around the complexities your programs should be:

• N ≤ 10 : O(N !)

• N ≤ 25 : O(2N )

• N ≤ 50 : O(N4)

• N ≤ 500 : O(N3)

• N ≤ 5000 : O(N2)

• N ≤ 100000 : O(N logN)

• N ≤ 1000000 : O(N)

6 Implementation Problems

Implementation Problems are those that really do not require much Computational Complexity analysis. They
focus on being able to write code quickly and accurately. However,these problems are usually only found in easier
contests, since they don’t require too much thinking or creativity. In this case, the problem will typically layout
what you need to do and you just have to carefully implement it. Most problems in competitive programming after
the initial stage are asking you to come up with clever algorithms that are both fast and space efficient.

7 Some Inspiration

It is worth noting that there is way to systematically build up your experience. The only way to get better at these
contests is to read up on topics and do a LOT of practice. Don’t be discouraged if you don’t do as well as you
expect on your first contest. Greatness takes a little patience.

2


	Introduction
	USACO
	The Division System

	Computational Complexity
	Common Complexities
	Cheat Sheet
	Implementation Problems
	Some Inspiration

