MST and Union Find

Neeyanth Kopparapu

October 2019

1 Introduction - The Problem

Suppose we have a set of trees, something we call a forest. 1 We want to know if two nodes are part of the same component.

Figure 1: Your Typical Graph
We would do this in the following way:

- find(node) would give us the label of the component that it belonged to. (This is all we would need if the graph didn't change)
- union $\left(n_{1}, n_{1}\right)$ connect the components that contain n_{1} and n_{2} and would have the same label.

We are gonna go through some ways to optimize the performance of this and some applications.

[^0]
2 Union Find

2.1 Naive Solutions

We would first think of two solutions:

2.1.1 Pointer Representation

In a graph, keep pointers to parents of nodes. (Arbitrarily choose parents)

-1	1	1	2	-1	5	6	6	-1	9
1	2	3	4	5	6	7	8	9	10

Figure 2: Your Typical Graph
We can then get find by keep tracing parents until we get to -1 , implying we hit the parent node of the component. Question: What is find(8)? Which nodes did you have to trace to get there?

Doing the union is also really easy. If we had to do union $(3,6)$, all we essentially have to do is set the find of the root of 3 to the find of 6 . Why does this work?

However, we run into a problem - find starts to grow linearly. This is a problem in our runtime, we are going for approximately constant complexity.

2.1.2 List Representation

In a typical graph, we just store (in an array) the label given the vertex. Clearly find is linear, but this also makes union become linear. Why?

2.2 Optimizations

We are going to go back to the pointer representation, because that is what we will optimize. We can make two fixes:

- The first is to always add the shorter tree to the taller tree, as we want to minimize the maximum height. An easy heuristic for the height of the tree is simply the number of elements in that tree. We can keep track of the size of the tree with a second array.
- The second is a bit more tricky. Assign the pointer associated with node to be find(node) at the end of the find operation. We can design find(node) to recursively call find on the pointer associated with node, so this fix sets pointers associated with nodes along the entire chain from node to find(node) to be find(node).

It turns out that these two optimizations turn the run-time of both operations to $O(\alpha(V))$, where $\alpha(V)$ is the inverse Ackerman function, and for all intensive purposes $\alpha(V) \leq 5$, so this makes is approximately constant.

```
Algorithm 1 Union-Find
    function \(\operatorname{Find}(v)\)
        if \(v\) is the root then
        return \(v\)
        parent \((v) \leftarrow \operatorname{FinD}(\operatorname{parent}(v))\)
        return parent \((v)\)
    function \(\operatorname{Union}(u, v)\)
        \(u\) Root \(\leftarrow \operatorname{FIND}(u)\)
        \(v\) Root \(\leftarrow \operatorname{Find}(v)\)
        if \(u\) Root \(=v\) Root then
            return
        if \(\operatorname{size}(u\) Root \()<\operatorname{size}(v\) Root \()\) then
            parent \((u\) Root \() \leftarrow v\) Root
            \(\operatorname{size}(v R o o t) \leftarrow \operatorname{size}(u\) Root \()+\operatorname{size}(v R o o t)\)
        else
            parent \((v R o o t) \leftarrow u\) Root
            \(\operatorname{size}(u\) Root \() \leftarrow \operatorname{size}(u\) Root \()+\operatorname{size}(v R o o t)\)
```

With that, we can start with its applications!

3 Minimum Spanning Tree

Consider a connected, undirected graph. A spanning tree is a subgraph that is a tree and contains every vertex in the original graph. A minimum spanning tree is a spanning tree such that the sum of the edge weights of the tree is minimized. Finding the minimum spanning tree uses many of the same ideas discussed earlier.

I won't discuss Prim's Algorithm but it is a way to do this. Instead, we are going to talk about Kruskal's Algorithm, essentially an HC of Union-Find in this application.

First, we need to sort the edges. Kruskal's algorithm greedy selectes edges that would contribute to the MST until all the nodes are accounted for. Union-Find is the perfect way to make sure all the nodes are accounted for!!

```
Algorithm 6 Kruskal
    for all edges \((u, v)\) in sorted order do
        if \(\operatorname{Find}(u) \neq \operatorname{Find}(v)\) then
            add \((u, v)\) to spanning tree
            \(\operatorname{Union}(u, v)\)
```

The complexity is thus $O(E \log E)$. Note that most Union-Find problems have the union-find as an intermediate step - mostly in flood fill or MST or something else. Like always, algorithms aren't meant to be memorized! Most problems will not be solved if you know the algorithm, but can be easily solved if you understand whats going on in the background.

4 Problems

- USACO 2014 March Contest, Silver Problem 1. Watering the Fields
- USACO 2014 January Contest, Gold Problem 3. Ski Course Rating
- USACO 2016 December Contest, Gold Problem 1. Moocast
- USACO 2011 December Contest, Gold Division Problem 2. Simplifying the Farm

[^0]: ${ }^{1}$ If you don't know what a tree is, go to the other lecture.

