Strongly Connected Components

Neeyanth Kopparapu
November 2019

1 Introduction

Let’s start by considering connectivity in undirected graphs. In such a graph, two nodes u and v are connected
if there is some path from u to v. Correspondingly, a connected component in such a graph is a subgraph in
which every node is reachable from every other node. Finding such components is straightforward: we can
simply perform a DFS. If we want to be able to connect components dynamically, we can use the Union-Find

data structure.

Figure 1: A directed graph. Credit: CCCC.

If our graph is directed, however, our previous definition of connectivity poses a problem. If v is reachable
from w, this doesn’t imply that u is reachable from v. So instead, we’ll say that u and v are strongly connected
if they are both reachable from each other.! Extending this to the idea of connected components, a strongly
connected component is a subgraph where any two nodes in this subgraph are strongly connected.

2 Kernel graph

We can travel between any two nodes in the same strongly connected component. So what if we replaced
each strongly connected component with a single node? This would give us what we call the kernel graph,
which describes the edges between strongly connected components. Note that the kernel graph is a directed
acyclic graph (why?). This means that there are orderings of the nodes, where if node A comes before node
B in our ordering, then it is impossible to get to A from B by traversing along edges.

1,2,5,6 47 k 8

~N

Figure 2: Kernal graph of the above directed graph.

1Two nodes in a directed graph are weakly connected if at least one is reachable from the other — as if you just replaced
every directed edge with an undirected edge.



3 Kosaraju-Sharir algorithm

First, let’s reverse all of the edges of the original graph to get the reverse graph. Perform a postorder traversal
on this graph using DFS, and store the reverse of the postorder in a list. This is similar to a topological sort
of the reverse graph.

Then, we simply perform an ordinary flood-fill DF'S on the graph, but looping through the nodes in the
order given above. All we need to do is assign components in the order in which we visit them, and this
gives us the strongly connected components! To understand why, consider what we’ve done in terms of the
kernel graph. Each component that we flood-fill is unreachable from any other unvisited component.

Algorithm 1 Kosaraju-Sharir

function VisIT(vertex )
if u has not been visited then
mark u as visited

for all in-neighbors v of u© do > such that v — u
VISIT(v)
add v to front of L
function AssSIGN(vertex u, num) > flood-fill an entire component
id(u) + num
for all out-neighbors v of © do > such that u — v

ASSIGN(v, num)

function KOSARAJUSHARIR(G(V, E))
initialize new empty list L
for all vertices v € V do
VisiT(v)

num < 0
for all vertices v € L do
if id(v) is undefined then > v has not been visited
num < num + 1
ASSIGN(v, num)

4 Tarjan’s Algorithm

Kosaraju-Sharir requires two traversals through the entire graph. We can find strongly connected components
with only one traversal using Tarjan’s algorithm, though it is more difficult to implement. Essentially, the
algorithm performs a DFS traversal while adding visited nodes to a stack. A node remains on the stack iff
it can reach a higher node on the stack; otherwise, it is the root node in the search tree of its component.

5 Problems

Mowing the Field (USACO January 2016, Platinum)

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths
all over his farm. The farm consists of N fields (1 < N < 100000), conveniently numbered 1..N, with each
one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then
cows are allowed to travel from X to Y but not from Y to X.

Bessie wonders how much grass she will be able to eat if she breaks the rules and follows up to one path
in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route
starting and ending at field 1, where she can follow up to one path along the route in the wrong direction.
Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same
path backwards twice.



